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These exercises will be collected Tuesday 10 November in the mailbox number 15
of the Mathematics department.

Denote the ring of real formal power series in one variable, respectively in seve-
ral variables, by:

R[[X]] :=

 ∞∑
i=0

aiXi | ai ∈ R

 ,
R[[X1, . . . ,Xn]] :=

 ∑
i=(i1,...,in)∈Nn

aiX
i1
1 · · · X

in
n | ai ∈ R

 ,
and the set of real Laurent series by:

K :=

 ∞∑
i=m

aiXi | m ∈ Z, ai ∈ R

.
Definition 0.1 The set of real Puiseux series is:

P :=
⋃
N∈N

 ∞∑
i=m

aiXi/N | m ∈ Z, ai ∈ R

.
The purpose of these exercises is to prove the following classical Puiseux theorem:
Theorem 0.2 (Puiseux theorem) The set P is a real closed field.

1. Definition 0.3 Define on K:
- the termwise addition:

∞∑
i=m

aiXi +

∞∑
i=n

biXi :=
n−1∑
i=m

aiXi +

∞∑
i=n

(ai + bi)Xi (where m ≤ n here as an

example),
- the convolution product: ∞∑

i=m

aiXi

  ∞∑
i=n

biXi

 :=
∞∑

i=m+n

∑
j+k=i

a jbkXi.

- the order relation: for any A(X) =

∞∑
i=m

aiXi ∈ K ,

A(X) ≥ 0 if and only if A(X) = 0 or the first coefficient am is positive.
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Show that K endowed with these relations is an ordered field.
(Hint: for the multiplicative inverse, recall Euler’s formula

1
1 + U

=

∞∑
i=0

(−1)iU i

for formal power series.)

2. Deduce that P is an ordered field.
(Hint: extend the preceding relations, noting that P is a countable union of
Laurent series fields).

3. Consider a polynomial equation
P(X,Y) = A0(X)Yn + A1(X)Yn−1 + · · · + An−1(X)Y + An(X) = 0

with coefficients in P. Show that, up to some changes of the variable X and of
the unknown Y , one can reduce without loss of generality to an equation where
A0(X) = 1 (unitary polynomial) with coefficients in R[[X]].

We consider known the following result:
Lemma 0.4 Given a field K, the polynomial ring K[Y] is a principal ideal do-
main and any two polynomials P(Y) and Q(Y) have a greatest common divisor
D(Y) expressible in the form

D(Y) = A(Y)P(Y) + B(Y)Q(Y).
In particular, if P0(Y) and Q0(Y) are relatively prime polynomials, then there are
polynomials A0(Y) and B0(Y) such that

1 = A0(Y)P0(Y) + B0(Y)Q0(Y).
4. Given two relatively prime polynomials P(Y) and Q(Y) of degree p and q, show

that for any polynomial F(Y) of degree strictly less than p + q, there exist poly-
nomials A(Y) and B(Y) of degree less than q and p respectively, such that

F(Y) = A(Y)P(Y) + B(Y)Q(Y).
(Hint: use the cited lemma and the euclidean division on F(Y)A0(Y) and F(Y)B0(Y)).

The following technical result relies essentially on the preceding result and the
Inverse Function theorem. We suppose it known for the purpose of this exercise.

Lemma 0.5 Let a := (a1, . . . ,an) ∈ Rn and
F(X1, . . . ,Xn,Y) = Yn + X1Yn−1 + · · · + Xn−1Y + Xn.

Assume that F0(Y) := F(a1, . . . ,an,Y) can be written as the product of two rela-
tively prime factors P0(Y) and Q0(Y) of degrees p ≥ 1 and q ≥ 1, respectively.
Then there are series C1(X1, . . . ,Xn), . . . ,Cp(X1, . . . ,Xn) and
D1(X1, . . . ,Xn), . . . ,Dq(X1, . . . ,Xn) in R[[X1, . . . ,Xn]] such that

P(X1, . . . ,Xn,Y) := Y p + C1(X1, . . . ,Xn)Y p−1 + · · · + Cp(X1, . . . ,Xn)
Q(X1, . . . ,Xn,Y) := Y p + D1(X1, . . . ,Xn)Y p−1 + · · · + Dq(X1, . . . ,Xn)
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satisfy
F(X1, . . . ,Xn,Y) = P(X1, . . . ,Xn,Y)Q(X1, . . . ,Xn,Y),

and
P(a1, . . . ,an,Y) = P0(Y), Q(a1, . . . ,an,Y) = Q0(Y).

5. Hensel’s lemma. Let F(X,Y) be a polynomial in Y of the form
F(X,Y) = Yn + A1(X)Yn−1 + · · · + An(X),

where each Ai ∈ R[[X]]. Suppose that F(0,Y) factors into the product of relati-
vely prime real factors P0(Y) and Q0(Y) of degrees p and q, respectively. Show
that F(X,Y) factors into the product of P(X,Y) and Q(X,Y) of same degrees p and
q respectively, with coefficients in R[[X]] and for which

P(0,Y) = P0(Y), Q(0,Y) = Q0(Y).
6. (a) Deduce that any series A(X) ∈ R[[X]] with A(X) > 0 has a square root in P.

(Hint: consider the equation Y2 − A(X) = 0).

(b) Deduce also that any polynomial
F(X,Y) = Yn + A1(X)Yn−1 + · · · + An(X)

with degree n that is odd has a root in P.
(Hint: proceed by induction on p where n = 2p + 1 and use the fact that R is real
closed ).

7. Conclude that P is real closed.
(Hint: use criterion (iii) of Artin-Schreier’s theorem and question 3).
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