Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 4 - Solution.

1. By induction on n, it suffices to consider a field K endowed with an order P, and to show that it extends to an order on $K(x)$.
(a) The refered result is:

Let L / K be a field extension and P an order on K. Consider the set

$$
T_{L}(P):=\left\{\sum_{i=1}^{n} a_{i} y_{i}^{2} \mid n \in \mathbb{N}, a_{i} \in P, y_{i} \in L\right\} .
$$

Then P admits an extension to an order on L if $-1 \notin T_{L}(P)$.
We reason by absurd: suppose that $-1 \in T_{K(x)}(P)$, then we have $p_{0}^{2}+a_{1} p_{1}^{2}+\cdots+$ $a_{n} p_{n}^{2}=0$ for some $a_{i} \in P \subset K$ and $p_{i} \in K[x]$. The leading coefficient of the left term of this equality is of the form $b_{0}^{2}+\sum a_{i} b_{i}^{2}=0$ with $b_{i} \in K$, which would mean that $-1 \in P \rightarrow$ contradiction.
(b) For every $f(x), g(x) \in K[x]$ with $f(x)=d_{m} x^{m}+\cdots+d_{k} x^{k}(m \geq k)$ and $g(x) \neq 0$, define

$$
\begin{aligned}
f(x) \geq 0 \quad & \Leftrightarrow \quad d_{k} \geq 0 \\
\frac{f(x)}{g(x)} \geq 0 \quad & \Leftrightarrow \quad f(x) g(x) \geq 0
\end{aligned}
$$

and show that this is an order on $K(x)$ extending the one on K, by showing that the set of positive elements is a positive cone containing P.
Note that x is positive infinitesimal with respect to K, i.e. $0<x<a$ for all $a \in K$. Thus the order on $K\left(x_{1}, \ldots, x_{n}\right)$ that we get is such that x_{i+1} is infinitesimal with respect to $K\left(x_{1}, \ldots, x_{i}\right)$ for any $i=1, \ldots, n-1$.
2. Consider $x \in R$ with $|x| \geq D$. We write

$$
f(x)=d x^{m}\left(1+\frac{d_{m-1}}{d} x^{-1}+\cdots+\frac{d_{0}}{d} x^{-m}\right) .
$$

Consider

$$
\left|\frac{d_{m-1}}{d} x^{-1}+\cdots+\frac{d_{0}}{d} x^{-m}\right|
$$

Since $|x| \geq D \geq 1$, we have $1 \geq D^{-1} \geq\left|x^{-1}\right| \geq\left|x^{-2}\right| \geq \cdots \geq\left|x^{-m}\right|$. Moreover applying the triangular inequality, we get that:

$$
\left|\frac{d_{m-1}}{d} x^{-1}+\cdots+\frac{d_{0}}{d} x^{-m}\right| \leq\left(\left|\frac{d_{m-1}}{d}\right|+\cdots+\left|\frac{d_{0}}{d}\right|\right) D^{-1}
$$

Since by definition

$$
D:=1+\sum_{i=m-1}^{0}\left|\frac{d_{i}}{d}\right|>\sum_{i=m-1}^{0}\left|\frac{d_{i}}{d}\right|
$$

we have

$$
\left|\frac{d_{m-1}}{d} x^{-1}+\cdots+\frac{d_{0}}{d} x^{-m}\right|<1
$$

We deduce that

$$
\left|1+\frac{d_{m-1}}{d} x^{-1}+\cdots+\frac{d_{0}}{d} x^{-m}\right|>0
$$

and so

$$
|f(x)|=\left|d x^{m}\right|\left|1+\frac{d_{m-1}}{d} x^{-1}+\cdots+\frac{d_{0}}{d} x^{-m}\right|>0 .
$$

3. Let $f(x)=x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0} \in R[x]$ with roots $a_{1}, \ldots, a_{m} \in R$.

If $a_{i} \geq 0$, for all $i=1, \ldots, m$, denote n the number of positive roots. Then $n \leq m$. If $n=m$, then by Descartes lemma, there are at least m sign changes in the sequence $\left(1, d_{m-1}, \ldots, d_{0}\right)$ which is only possible if for any i, there is a sign change between 1 and d_{m-1}, which implies that $d_{m-1}<0 \Leftrightarrow(-1) d_{m-1}>0$, and between d_{i+1} and d_{i}, which implies by a straightforward induction that $(-1)^{m-i} d_{i} \geq 0$ for all i. If $n<m$, it means that 0 is a root with multiplicity $m-n$. Equivalently, we can factor x^{m-n} in $f(x)$. Then we obtain a polynomial of degree n with n positive roots, as in the preceding case.

If $(-1)^{m-i} d_{i} \geq 0$ for all $i=0, \ldots, m-1$, suppose that there exists a negative root $a<0$. Then $\beta:=-a>0$. We have

$$
\begin{aligned}
f(a) & =0 \\
& =f(-\beta) \\
& =(-1)^{m} \beta^{m}+(-1)^{m-1} d_{m-1} \beta^{m-1}+\cdots+(-1) d_{1} \beta+d_{0} \\
& =(-1)^{m}\left[\beta^{m}+(-1) d_{m-1} \beta^{m-1}+\cdots+(-1)^{m-1} d_{1} \beta+(-1)^{m} d_{0}\right] .
\end{aligned}
$$

But a sum of non negative terms is zero if and only if each term is zero \rightarrow contradiction.
4. Consider $f(x)=d x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0} \in R[x]$. We write its decomposition in irreducible factors as

$$
f(x)=d \prod\left(x-a_{i}\right)^{k_{i}} \prod\left[\left(x-b_{j}\right)^{2}+c_{j}^{2}\right]^{l_{j}} .
$$

We show that $(a) \Rightarrow(b)$. Suppose that $f \geq 0$ on R and that there exists a factor ($x-a_{i}$) with multiplicity k_{i} odd (ungerade), say $i=1$ for instance. Consider

$$
\frac{f(x)}{\left(x-a_{1}\right)^{k_{1}}}=d \prod_{i \geq 2}\left(x-a_{i}\right)^{k_{i}} \prod\left[\left(x-b_{j}\right)^{2}+c_{j}^{2}\right]^{l_{j}} .
$$

Since $\left(x-a_{1}\right)^{k_{1}}$ has a (unique) sign change at a_{1} and $f(x) \geq 0$, we should have a sign change at a_{1} in the right term of this equality, which is a polynomial. By the Intermediate Value Theorem, this polynomial would have a_{1} as a root. Equivalently $\left(x-a_{1}\right)$ would be a factor of it, which contradicts the fact that k_{1} is the multiplicity of a_{1} for f. Thus all the k_{i} 's are even, so $\prod\left(x-a_{i}\right)^{k_{i}} \prod\left[\left(x-b_{j}\right)^{2}+c_{j}^{2}\right]^{l_{j}} \geq$ 0 and consequently $d>0$.

We show that $(b) \Rightarrow(c)$. We suppose that $k_{i}=2 m_{i}$ for all i. Then we write

$$
f(x)=\left[\sqrt{d} \prod_{i \geq 2}\left(x-a_{i}\right)^{m_{i}}\right]^{2} \prod\left[\left(x-b_{j}\right)^{2}+c_{j}^{2}\right]^{l_{j}} .
$$

Now use the fact that for any $a, b, c, d,\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)=(a c-b d)^{2}+(a d-b c)^{2}$, to rewrite $\prod\left[\left(x-b_{j}\right)^{2}+c_{j}^{2}\right]^{l_{j}}$ as a sum of squares of polynomials.

The remaining $(c) \Rightarrow(a)$ is obvious.

