Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 4

These exercises will be collected Tuesday 17 November in the mailbox number 15 of the Mathematics department.

Definition 0.1 (a) Let K be a field and let $T \subset K$ such that
(i) $T+T \subset T$ (where $T+T:=\left\{t_{1}+t_{2} \mid t_{1}, t_{2} \in T\right\}$);
(ii) $T . T \subset T$ (where $T . T:=\left\{t_{1} t_{2} \mid t_{1}, t_{2} \in T\right\}$);
(iii) $a^{2} \in T$ for every $a \in K$.

Then T is said to be a preordering (Präordnung) or cone of K.
(b) A preordering T of a field K is said to be proper (echte Präordnung) if $-1 \notin T$.
(c) A proper preordering T of a field K is said to be a positive cone (Positivkegel) if $-T \cup T=K$, where $-T:=\{-t: t \in T\}$.

Given a field K, recall that there is a bijection between the set of orderings \leq on K and the set of positive cones of K. Therefore by abuse of terminology, we say that " T is an ordering of $K^{\prime \prime}$ whenever T is a positive cone of K.

1. Show that any ordering T on a field K extends to an order on the field of rational functions in several variables $K\left(x_{1}, \ldots, x_{n}\right)$, using induction on n and two different methods:
(a) by contradiction using the criterion for extension of orderings in the case of a field extension L / K;
(b) by construction of an order relation generalising the one defined in the lectures for the field $\mathbb{R}(x)$.

Recall that a field R is said to be real if it admits an ordering. Frow now on, R will denote a real closed field, i.e. a real field which has no proper real algebraic extension (keine echte algebraische reelle Erweiterung).
2. Given a polynomial $f(x)=d x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0} \in R[x]$ with $d \neq 0$, we set

$$
D:=1+\sum_{i=m-1}^{0}\left|\frac{d_{i}}{d}\right| \in R
$$

Show that any real root a of f is such that $|a|<D$.
3. Let $f(x)=x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0}$ be a monic polynomial in $R[x]$, whose roots a_{1}, \ldots, a_{m} are all reals. Show that:

$$
a_{i} \geq 0 \text { for all } i=1, \ldots, m \Leftrightarrow(-1)^{m-i} d_{i} \geq 0 \text { for all } i=0, \ldots, m-1
$$

4. Let $f(x)=d x^{m}+d_{m-1} x^{m-1}+\cdots+d_{0}$ be a polynomial in $R[x]$ with $d \neq 0$. Show that the following assertions are equivalent:
(a) $f \geq 0$ on R (i.e. $f(x) \geq 0$ for any $x \in R$);
(b) $d>0$ and all the real roots of f have even multiplicity (gerade Vielfachheit);
(c) $f=g^{2}+h^{2}$ for some $g, h \in R[x]$.
