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Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 5 - Solution

1. (a) The intervals cover K: for any x ∈ K, x ∈]x − 1,x + 1[.
For finite intersection of intervals, it suffices to consider 2 of them. Verify the
case if one of them is the empty set. If not, denote them by ]a,b[ and ]c,d[ with
a < b and c < d in K and for instance b − a ≥ d − c, and consider the 4 different
cases and compute the intersection (make a picture).

(b) (i) Consider a point (a,b) ∈ K × K, we use the definition of continuity at
this point. Take any ε > 0 in K. Then, for any (x,y) ∈]a − ε/2,a + ε/2[×]b −
ε/2,b + ε/2[, we have x + y ∈]a + b − ε,a + b + ε[. For multiplication, consi-

der 0 < α < min
{√

ε

2
,
ε

4|b|

}
and 0 < β < min

{√
ε

2
,
ε

4|a|

}
. Then for any

(x,y) ∈]a−α,a+α[×]b−β,b+β[, we have x.y ∈ ]a.b − ε,a.b + ε[ (for the compu-
tations, use inequalities with absolute values so that you don’t need to consider
the different cases).

(ii) Consider a ∈ K∗ and any ε > 0 in K. We look for some α > 0 such that,

whenever x ∈]|a| − α,|a| + α[, we have
1
x
∈]

1
|a|
− ε,

1
|a|
ε[.

This implies that

0 < α <
ε|a|2

1 + ε|a|
.

Then it remains to show that this condition is sufficient (note that
ε|a|2

1 + ε|a|
<

ε|a|2

1 − ε|a|
since 0 < 1 − ε|a| < 1 + ε|a|). We suppposed without loss of generality

that ε <
1
|a|

.

(c) We know that the connected subsets of R are exactly the intervals. Then so it
is by isomorphism for K.
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Now take any a ∈ K and consider its connected component Ca. As a connected
subset of K, Ca is a non empty (it contains a) interval. Moreover, since any inter-
val in K is connected, then any interval ]a − x,a + x[ for a positive x is included
in Ca since it contains a. Then make x tends to∞.

(d) It suffices to show that the base for the product topology, namely the hyper-
cubes ∏n

i=1]ai,bi[ for any ai,bi ∈ K,
is equivalent to the base for the euclidean topology, namely the open balls

B((a1, . . . ,an),r) := {(x1, . . . ,xn) ∈ Kn |
√

(x1 − a1)2 + · · · + (xn − an)2 < r} for
any ai,r ∈ K with r > 0.

Thus, one has to show that, for any such hypercube, there exist a ball contained

in it (take
(

a1 + b1

2
, . . . ,

a1 + b1

2

)
as a center and mini{

bi − ai

2
} as a radius) and a

ball containing it (take the same center and maxi{
bi − ai

2
} as a radius).

2. By the change of variable X = x − c, we reduce to the case of a polynomial
F(x) = a0Xn + · · · + an−mXm which has 0 as a root with multiplicity m. We
want to show that there exists δ > 0 in R such that for any X with |X| < δ,
S ign(F(X)F′(x)) = S ign(X).
We rewrite F(X) = XmG(X) with G(X) = a0Xn−m + · · · + an−m and G(0) =

an−m , 0. Then we have XF′(X) = mXmG(X) + XmXG′(X) = and G′(X) =

(n − m)a0Xn−m−1 + · · · + an−m+1. Then we have
XF′(X)
F(X)

= m + X
G′(X)
G(X)

.

But the second term X
G′(X)
G(X)

has value 0
G′(0)
G(0)

= 0
an−m+1

an−m
= 0 when X = 0.

By continuity of X
G′(X)
G(X)

, there exists δ > 0 such that for any |X| < δ, we have∣∣∣∣∣X G′(X)
G(X)

∣∣∣∣∣ < m. Then for any such X, we have
XF′(X)
F(X)

> 0.

3. Consider f (x) = x3 + 6x2 − 16 in R[x].

(a) The Sturm sequence of f (x) is S f (x) = ( f0(x), . . . , f3(x)) with:
f0(x) = f (x);
f1(x) = 3x2 + 12x;
f2(x) = 8x + 16;
f3(x) = 12.

(b) We have
V f (−∞) = Var((−1)3,(−1)23,(−1)18,12)

= Var(−1,3, − 18,12)
= 3

V f (+∞) = Var(1,3,18,12)
= 0.
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So the number of roots of f (x) in R is V f (−∞) − V f (+∞) = 3.

(c) We compute S f (−7) = (−65,63, − 40,12) which has 3 sign changes, and
S f (2) = (16,36,32,12) which has no sign change. Then there are 3 − 0 = 3 roots
between −7 and 2.
We compute S f (−6) = (−16,36,−32,12) which has 3 sign changes, and S f (−5) =

(9,15, − 24,12) which has 2 sign changes. So there is 3 − 2 = 1 root, say α1
between -6 and -5.
We compute f (−2) = 0, so α2 = −2.
We compute S f (1) = (−9,15,24,12) which has 1 sign change. Since S f (2) has
no sign change, the third root α3 is between 1 and 2.

4. We consider Q embedded in R by the inclusion map, say φ : Q → R. Then we
consider the algebraic extension Q(

√
2) of Q, which is a quadratic extension: the

minimum polynomial is f (x) = x2 − 2 = (x +
√

2)(x −
√

2). Then by Corollary
6 of the Lecture, the number of embedding extensions ψ : Q(

√
2) → R is equal

to the number of extensions Q of the ordering P = Q≥0. Here we have only two
possibilities:
• either

√
2 ∈ Q⇔ ψ(

√
2) =

√
2 > 0 in R (in this case, ψ is the inclusion as φ);

• or −
√

2 ∈ Q ⇔ ψ(
√

2) = −
√

2 < 0 in R (in this case, ψ is order reversing for
−
√

2: it looks like conjugation for complex numbers).

5. We consider a series 1 +

∞∑
i=1

aiXi. We show that 1 +

∞∑
i=1

aiXi = (1 +

∞∑
i=1

biXi)2 for

some bi ∈ R. Indeed,

(1+

∞∑
i=1

biXi)2 = 1+2b1X+(2b2+b2
1)X2+2(b3+b1b2)X3+(2b4+2b1b3+b2

2)X4+· · · ,

and so, by induction, one proves that for any n ∈ N∗, 2bn = an + Pn(an−1, . . . ,a1)
for some quadratic polynomial Pn in R[X].
As an example, we compute b1 = a1/2, b2 = (a2 − a2

1/4)/2, b3 = a3/2 − a1(a2 −

a2
1/4)/4.

As a consequence, for any ordering onK extending the one on the reals, we have

c0 + c1X + c2X2 · · · = c0(1 +

∞∑
i=1

aiXi) > 0 if and only if c0 > 0. It implies that X

is infinitesimal compared to the reals. Then the two orderings extending the one
on R are given by either R>0 > X > 0 or R<0 < X < 0.
(One can verify this looking at an arbitrary non zero Laurent series

c(X) = c−mX−m + c−m+1X−m+1 + · · · .
Factorizing by c−mX−m, we rewrite it

c(X) = c−mX−m(1 + a1X + a2X2 + · · · ) with ai := c−m+i/c−m

= c−mX−m(1 +

∞∑
i=1

biXi)2.)
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