Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 5-Solution

1. (a) The intervals cover K : for any $x \in K, x \in] x-1, x+1[$.

For finite intersection of intervals, it suffices to consider 2 of them. Verify the case if one of them is the empty set. If not, denote them by]a,b[and]c,d[with $a<b$ and $c<d$ in K and for instance $b-a \geq d-c$, and consider the 4 different cases and compute the intersection (make a picture).
(b) (i) Consider a point $(a, b) \in K \times K$, we use the definition of continuity at this point. Take any $\epsilon>0$ in K. Then, for any $(x, y) \in] a-\epsilon / 2, a+\epsilon / 2[\times] b-$ $\epsilon / 2, b+\epsilon / 2$ [, we have $x+y \epsilon] a+b-\epsilon, a+b+\epsilon[$. For multiplication, consi$\operatorname{der} 0<\alpha<\min \left\{\sqrt{\frac{\epsilon}{2}}, \frac{\epsilon}{4|b|}\right\}$ and $0<\beta<\min \left\{\sqrt{\frac{\epsilon}{2}}, \frac{\epsilon}{4|a|}\right\}$. Then for any $(x, y) \in] a-\alpha, a+\alpha[\times] b-\beta, b+\beta[$, we have $x . y \in] a . b-\epsilon, a . b+\epsilon[$ (for the computations, use inequalities with absolute values so that you don't need to consider the different cases).
(ii) Consider $a \in K^{*}$ and any $\epsilon>0$ in K. We look for some $\alpha>0$ such that, whenever $x \in]|a|-\alpha,|a|+\alpha\left[\right.$, we have $\left.\frac{1}{x} \in\right] \frac{1}{|a|}-\epsilon, \frac{1}{|a|} \epsilon[$.
This implies that

$$
0<\alpha<\frac{\epsilon|a|^{2}}{1+\epsilon|a|}
$$

Then it remains to show that this condition is sufficient (note that $\frac{\epsilon|a|^{2}}{1+\epsilon|a|}<$ $\frac{\epsilon|a|^{2}}{1-\epsilon|a|}$ since $\left.0<1-\epsilon|a|<1+\epsilon|a|\right)$. We suppposed without loss of generality that $\epsilon<\frac{1}{|a|}$.
(c) We know that the connected subsets of \mathbb{R} are exactly the intervals. Then so it is by isomorphism for K.

Now take any $a \in K$ and consider its connected component C_{a}. As a connected subset of K, C_{a} is a non empty (it contains a) interval. Moreover, since any interval in K is connected, then any interval] $a-x, a+x$ [for a positive x is included in C_{a} since it contains a. Then make x tends to ∞.
(d) It suffices to show that the base for the product topology, namely the hypercubes

$$
\left.\prod_{i=1}^{n}\right] a_{i}, b_{i}\left[\text { for any } a_{i}, b_{i} \in K\right.
$$

is equivalent to the base for the euclidean topology, namely the open balls

$$
B\left(\left(a_{1}, \ldots, a_{n}\right), r\right):=\left\{\left(x_{1}, \ldots, x_{n}\right) \in K^{n} \mid \sqrt{\left(x_{1}-a_{1}\right)^{2}+\cdots+\left(x_{n}-a_{n}\right)^{2}}<r\right\} \text { for }
$$ any $a_{i}, r \in K$ with $r>0$.

Thus, one has to show that, for any such hypercube, there exist a ball contained in it (take $\left(\frac{a_{1}+b_{1}}{2}, \ldots, \frac{a_{1}+b_{1}}{2}\right)$ as a center and $\min _{i}\left\{\frac{b_{i}-a_{i}}{2}\right\}$ as a radius) and a ball containing it (take the same center and $\max _{i}\left\{\frac{b_{i}-a_{i}}{2}\right\}$ as a radius).
2. By the change of variable $X=x-c$, we reduce to the case of a polynomial $F(x)=a_{0} X^{n}+\cdots+a_{n-m} X^{m}$ which has 0 as a root with multiplicity m. We want to show that there exists $\delta>0$ in R such that for any X with $|X|<\delta$, $\operatorname{Sign}\left(F(X) F^{\prime}(x)\right)=\operatorname{Sign}(X)$.
We rewrite $F(X)=X^{m} G(X)$ with $G(X)=a_{0} X^{n-m}+\cdots+a_{n-m}$ and $G(0)=$ $a_{n-m} \neq 0$. Then we have $X F^{\prime}(X)=m X^{m} G(X)+X^{m} X G^{\prime}(X)=$ and $G^{\prime}(X)=$ $(n-m) a_{0} X^{n-m-1}+\cdots+a_{n-m+1}$. Then we have

$$
\frac{X F^{\prime}(X)}{F(X)}=m+X \frac{G^{\prime}(X)}{G(X)}
$$

But the second term $X \frac{G^{\prime}(X)}{G(X)}$ has value $0 \frac{G^{\prime}(0)}{G(0)}=0 \frac{a_{n-m+1}}{a_{n-m}}=0$ when $X=0$. By continuity of $X \frac{G^{\prime}(X)}{G(X)}$, there exists $\delta>0$ such that for any $|X|<\delta$, we have $\left|X \frac{G^{\prime}(X)}{G(X)}\right|<m$. Then for any such X, we have $\frac{X F^{\prime}(X)}{F(X)}>0$.
3. Consider $f(x)=x^{3}+6 x^{2}-16$ in $R[x]$.
(a) The Sturm sequence of $f(x)$ is $S_{f}(x)=\left(f_{0}(x), \ldots, f_{3}(x)\right)$ with:

$$
\left\{\begin{array}{l}
f_{0}(x)=f(x) \\
f_{1}(x)=3 x^{2}+12 x \\
f_{2}(x)=8 x+16 \\
f_{3}(x)=12
\end{array}\right.
$$

(b) We have

$$
\begin{aligned}
V_{f}(-\infty) & =\operatorname{Var}\left((-1)^{3},(-1)^{2} 3,(-1)^{1} 8,12\right) \\
& =\operatorname{Var}(-1,3,-18,12) \\
& =3 \\
V_{f}(+\infty) & =\operatorname{Var}(1,3,18,12) \\
& =0 .
\end{aligned}
$$

So the number of roots of $f(x)$ in R is $V_{f}(-\infty)-V_{f}(+\infty)=3$.
(c) We compute $S_{f}(-7)=(-65,63,-40,12)$ which has 3 sign changes, and $S_{f}(2)=(16,36,32,12)$ which has no sign change. Then there are $3-0=3$ roots between -7 and 2 .
We compute $S_{f}(-6)=(-16,36,-32,12)$ which has 3 sign changes, and $S_{f}(-5)=$ $(9,15,-24,12)$ which has 2 sign changes. So there is $3-2=1$ root, say α_{1} between -6 and -5 .
We compute $f(-2)=0$, so $\alpha_{2}=-2$.
We compute $S_{f}(1)=(-9,15,24,12)$ which has 1 sign change. Since $S_{f}(2)$ has no sign change, the third root α_{3} is between 1 and 2 .
4. We consider \mathbb{Q} embedded in \mathbb{R} by the inclusion map, say $\phi: \mathbb{Q} \rightarrow \mathbb{R}$. Then we consider the algebraic extension $\mathbb{Q}(\sqrt{2})$ of \mathbb{Q}, which is a quadratic extension: the minimum polynomial is $f(x)=x^{2}-2=(x+\sqrt{2})(x-\sqrt{2})$. Then by Corollary 6 of the Lecture, the number of embedding extensions $\psi: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{R}$ is equal to the number of extensions Q of the ordering $P=\mathbb{Q}_{\geq 0}$. Here we have only two possibilities:

- either $\sqrt{2} \in Q \Leftrightarrow \psi(\sqrt{2})=\sqrt{2}>0$ in \mathbb{R} (in this case, ψ is the inclusion as ϕ);
- or $-\sqrt{2} \in Q \Leftrightarrow \psi(\sqrt{2})=-\sqrt{2}<0$ in \mathbb{R} (in this case, ψ is order reversing for $-\sqrt{2}$: it looks like conjugation for complex numbers).

5. We consider a series $1+\sum_{i=1}^{\infty} a_{i} X^{i}$. We show that $1+\sum_{i=1}^{\infty} a_{i} X^{i}=\left(1+\sum_{i=1}^{\infty} b_{i} X^{i}\right)^{2}$ for some $b_{i} \in \mathbb{R}$. Indeed,
$\left(1+\sum_{i=1}^{\infty} b_{i} X^{i}\right)^{2}=1+2 b_{1} X+\left(2 b_{2}+b_{1}^{2}\right) X^{2}+2\left(b_{3}+b_{1} b_{2}\right) X^{3}+\left(2 b_{4}+2 b_{1} b_{3}+b_{2}^{2}\right) X^{4}+\cdots$, and so, by induction, one proves that for any $n \in \mathbb{N}^{*}, 2 b_{n}=a_{n}+P_{n}\left(a_{n-1}, \ldots, a_{1}\right)$ for some quadratic polynomial P_{n} in $\mathbb{R}[X]$.
As an example, we compute $b_{1}=a_{1} / 2, b_{2}=\left(a_{2}-a_{1}^{2} / 4\right) / 2, b_{3}=a_{3} / 2-a_{1}\left(a_{2}-\right.$ $\left.a_{1}^{2} / 4\right) / 4$.
As a consequence, for any ordering on \mathcal{K} extending the one on the reals, we have $c_{0}+c_{1} X+c_{2} X^{2} \cdots=c_{0}\left(1+\sum_{i=1}^{\infty} a_{i} X^{i}\right)>0$ if and only if $c_{0}>0$. It implies that X is infinitesimal compared to the reals. Then the two orderings extending the one on \mathbb{R} are given by either $\mathbb{R}_{>0}>X>0$ or $\mathbb{R}_{<0}<X<0$.
(One can verify this looking at an arbitrary non zero Laurent series

$$
c(X)=c_{-m} X^{-m}+c_{-m+1} X^{-m+1}+\cdots
$$

Factorizing by $c_{-m} X^{-m}$, we rewrite it

$$
\begin{aligned}
c(X) & =c_{-m} X^{-m}\left(1+a_{1} X+a_{2} X^{2}+\cdots\right) \text { with } a_{i}:=c_{-m+i} / c_{-m} \\
& \left.=c_{-m} X^{-m}\left(1+\sum_{i=1}^{\infty} b_{i} X^{i}\right)^{2} .\right)
\end{aligned}
$$

