Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 7 - Solution

1. (a) For any polynomial $f(\underline{X}) \in R[\underline{X}]$, the corresponding polynomial function is continuous for the interval topology on R^{n}. So $U(f):=\left\{\underline{x} \in R^{n} \mid f(\underline{x})>0\right\}=$ $f^{-1}(] 0,+\infty[)$ is open in this topology as the preimage of $] 0,+\infty[$ which is open in R.
(b) Basic open semi-algebraic sets are of the form

$$
\begin{aligned}
U\left(f_{1}, \ldots, f_{p}\right) & :=\left\{\underline{x} \in R^{n} \mid f_{1}(\underline{x})>0, \ldots, f_{p}(\underline{x})>0\right\} \\
& =\underline{U}\left(f_{1}\right) \cap \cdots \hat{\cap} U\left(f_{p}\right) .
\end{aligned}
$$

Given any 2 of them, namely $U\left(f_{1}, \ldots, f_{p}\right)$ and $U\left(g_{1}, \ldots, g_{q}\right)$, then we have

$$
\begin{aligned}
U\left(f_{1}, \ldots, f_{p}\right) \cap U\left(g_{1}, \ldots, g_{q}\right): & \left\{\underline{x} \in R^{n} \mid f_{1}(\underline{x})>0, \ldots, f_{p}(\underline{x})>0,\right\} \\
& \cap\left\{\underline{x} \in R^{n} \mid g_{1}(\underline{x})>0, \ldots, g_{q}(\underline{x})>0,\right\} \\
= & U\left(f_{1}\right) \cap \cdots \cap U\left(f_{p}\right) \cap U\left(g_{1}\right) \cap \cdots \cap U\left(g_{q}\right) \\
= & U\left(f_{1}, \ldots, f_{p}, g_{1}, \ldots, g_{q}\right) .
\end{aligned}
$$

Now consider any point $\underline{a}=\left(a_{1}, \ldots, a_{n}\right) \in R^{n}$. Then the following basic open semi-algebraic set
$U\left(f_{1}, \ldots, f_{n}\right)=\left\{\underline{x} \in R^{n} \mid f_{1}\left(\underline{x}=1-\left(x_{1}-a_{1}\right)^{2}>0, \ldots, f_{n}\left(\underline{x}=1-\left(x_{n}-a_{n}\right)^{2}>0\right\}\right.\right.$. (It is the open unit cube centered in \underline{a}.)
2. Using the normal form for semi-algebraic sets, we only have to prove the statement for basic semi-algebraic sets of the form

$$
Z(f) \cap U\left(f_{1}, \ldots, f_{p}\right)
$$

The set $Z(f)$ is the union of all roots in R of the polynomial $f(\underline{X})$, thus it is as finite set of points.
For any $i=1, \ldots, p$, write $\alpha_{i, 0}=-\infty<\alpha_{i, 1}<\ldots<\alpha_{i, k_{i}}<\alpha_{i, k_{i}+1}=+\infty$ where $\alpha_{i, l}, l=1, \ldots, k_{i}$ are the roots in R of the polynomial $f_{i}(\underline{X})$. Then, applying the Intermediate Value Theorem, we get that the domain of positivity of $f_{i}(\underline{X})$, i.e. $U\left(f_{i}\right)$, is a finite union (eventually empty) of intervals $] \alpha_{i, l}, \alpha_{i, l+1}\left[, l=0, \ldots, k_{i}\right.$. To conclude, it suffices to observe that for any $i, j=1, \ldots, p$ and any $l=0, \ldots, k_{i}$, $m=0, \ldots, k_{j}$, the intersection $] \alpha_{i, l}, \alpha_{i, l+1}[\cap] \alpha_{j, m}, \alpha_{j, m+1}[$ is again an interval.
3. (a) Consider the horizontal line $\Delta:=\left\{(x, y) \in \mathbb{R}^{2} \mid y=0\right\}$ which is semialgebraic. If the infinite zig-zag, call it \mathcal{Z}, was semi-algebraic, we would have $\Delta \cap \mathcal{Z}=\{(k, 0), k \in \mathbb{Z}\}$ semi-algebraic in \mathbb{R}^{2}. Considering the projection on the x-axis of $\Delta \cap \mathcal{Z}$, which is \mathbb{Z}, by the geometric version of Tarski-Seidenberg Theorem, we would have \mathbb{Z} semi-algebraic in \mathbb{R}. But this contradicts the result of the preceding exercise.
(b) The compact subsets of \mathbb{R}^{2} are exactly the closed and bounded ones (recall that interval topology is identical to the euclidean topology). So, considering a compact semialgebraic subset K of \mathbb{R}^{2}, we can suppose it included into some closed ball, or equivalently into some closed square

$$
T_{k}:=\left\{(x, y) \in \mathbb{R}^{2} \mid k^{2}-x^{2} \geq 0, k^{2}-y^{2} \geq 0\right\}
$$

for some $k \in \mathbb{N}$. Thus $K \cap \mathcal{Z}=K \cap \mathcal{Z} \cap T_{k}$.
But $\mathcal{Z} \cap T_{k}$ is semi-algebraic. Indeed, it is the finite union of segments

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid y=(-1)^{l+1}(x-(2 l+1))\right\} \cap\left\{(x, y) \in \mathbb{R}^{2} \mid 4-(x-l)^{2} \geq 0\right\}
$$

So $K \cap \mathcal{Z}$ is semi-algebraic.
4. The aim of this exercise is to prove that the real exponential function exp is not semi-algebraic.
(a) Consider some polynomials $p_{0}(X), \ldots, p_{n}(X) \in \mathbb{R}[X]$, and an infinite subset $U \subset \mathbb{R}$ such that for all $x \in U$

$$
p_{n}(x)\left(e^{x}\right)^{n}+p_{n-1}(x)\left(e^{x}\right)^{n-1}+\cdots+p_{0}(x)=0
$$

Suppose that the p_{i} 's are not all identically 0 , and that n is the biggest exponent of e^{x} for which p_{n} is non 0 .
(i) If U has no bound, then it has an infinite subsequence, say $\left(x_{k}\right)_{k \in \mathbb{N}}$ tending to $\pm \infty$. For instance, consider the case $x_{k} \rightarrow+\infty$. Write

$$
\begin{aligned}
f(x) & =p_{n}(x)\left(e^{x}\right)^{n}+p_{n-1}(x)\left(e^{x}\right)^{n-1}+\cdots+p_{0}(x) \\
& =\left(e^{x}\right)^{n}\left[p_{n}(x)+\frac{p_{n-1}}{e^{x}}+\cdots+\frac{p_{0}}{\left(e^{x}\right)^{n}}\right]
\end{aligned}
$$

But, for any $l=1, \ldots, n$, we have

$$
\lim _{k \rightarrow \infty} \frac{p_{n-l}\left(x_{k}\right)}{\left(e^{x_{k}}\right)^{l}}=0
$$

So we have

$$
\lim _{k \rightarrow \infty} f\left(x_{k}\right)=\lim _{k \rightarrow \infty}\left(e^{x_{k}}\right)^{n} p_{n}\left(x_{k}\right)= \pm \infty
$$

which contradicts the fact that for any $k, f\left(x_{k}\right)=0$.
(ii) if U is bounded, since it is infiniteb in \mathbb{R}, it has an accumulation point. Now, consider $f(z)$ where z is a complex variable. It is a holomorphic function on the whole complex plane \mathbb{C} as sum and product of $e^{z}, p_{0}(z), \ldots, p_{n}(z)$ which are holomorphic functions on \mathbb{C}. Then, applying the Identity Theorem of Complex Analysis, we obtain that $f(z)=0$ for any $z \in \mathbb{C}$. In particular, restricting to the
real variable x, we get that $f(x)=0$ for any $x \in \mathbb{R}$. Then we can apply the same argument as in the preceding point (i) to get a contradiction.
(b) Suppose that $\Gamma_{\text {exp }}$ is semi-algebraic in \mathbb{R}^{2}. Using the cited Normal Form proposition, we would have that $\Gamma_{\exp }$ is a finite union of basic semi-algebraic sets of the form

$$
Z(g) \cap U\left(g_{1}, \ldots, g_{p}\right)
$$

for $g, g_{1}, \ldots, g_{p} \in \mathbb{R}[X, Y]$.
Now, we proved in the preceding question that $Z(g)$ must be finite for any g. So $\Gamma_{\text {exp }}$ would be piecewise a finite union of sets $U\left(g_{1}, \ldots, g_{p}\right)$. But in exercise 1, we proved that for any $g, U(g)$ is open in \mathbb{R}^{2}, so $U\left(g_{1}, \ldots, g_{p}\right)$ is open in \mathbb{R}^{2}. This would mean that $\Gamma_{\exp }$ contains an open square of \mathbb{R}^{2}, and thus has non empty interior. This is false, since it is a graph of a continuous one variable function, i.e. it is a closed set with empty interior.

