Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 8

These exercises will be collected Tuesday 15 December in the mailbox number 15 of the Mathematics department.

Theorem 0.1 (Tarski-Seidenberg Principle) Let $f_{i}(\underline{T}, X)=h_{i, m_{i}}(\underline{T}) X^{m_{i}}+\cdots+h_{i, 0}(\underline{T})$ for $i=1, \ldots$, s be a sequence of polynomials in $n+1$ variables with coefficients in \mathbb{Z}, where $\underline{T}=\left(T_{1}, \ldots, T_{n}\right)$. Let ϵ be a function from $\{1, \ldots, s\}$ to $\{-1,0,1\}$. Then there exists a boolean combination $\mathcal{B}(\underline{T})$ (i.e. a finite composition of conjunctions, disjunctions and negations) of polynomial equations and inequalities in the variables \underline{T} with coefficients in \mathbb{Z} such that for every real closed field R and for every $\underline{t} \in R^{n}$, the system

$$
\left\{\begin{aligned}
\operatorname{Signf}_{1}(\underline{t}, X) & =\epsilon(1) \\
\vdots & \\
\operatorname{Signf}_{s}(\underline{t}, X) & =\epsilon(s)
\end{aligned}\right.
$$

has a solution x in R if and only if $\mathcal{B}(\underline{t})$ holds true in R.

1. Denote $\underline{X}:=\left(X_{1}, X_{2}, X_{3}, X_{4}\right)$. The aim of this exercise is to show, in the following cubic equation

$$
\begin{equation*}
f(\underline{X}):=X_{1}^{3}+X_{2} X_{1}^{2}+X_{3} X_{1}+X_{4}=0, \tag{1}
\end{equation*}
$$

how to eliminate the variable X_{1}. We will adapt to our context the classical method of Cardano of resolution of cubic equations in one variable.
(a) Show that the equation (1) is equivalent to

$$
\begin{equation*}
g(X, Y, Z):=X^{3}+Y X+Z=0 \tag{2}
\end{equation*}
$$

where X, Y and Z depend themselves polynomially on \underline{X}.
(Hint: use the Tschirnhausen transform $X_{1}=X-\frac{X_{2}}{3}$.)
(b) Consider R a real closed field and $R[i]$ (with $i:=\sqrt{-1}$) its algebraic closure. Use the changes of unknown

$$
X=U+V \text { and } Y=-3 U V
$$

to show that, for any $y, z \in R^{2}$, there exist $u, v \in R[i]$ such that $w_{1}:=u^{3}$ and $w_{2}:=v^{3}$ are the two solutions with respect to W of the following equation

$$
\begin{equation*}
h(W, y, z):=W^{2}+z W-\frac{y^{3}}{27}=0 \tag{3}
\end{equation*}
$$

(c) Denote $D(Y, Z):=Z^{2}+\frac{4}{27} Y^{3}$ (which is called the discriminant for the cubic equation (2)). Consider $y, z \in R^{2}$. Deduce that
$\begin{cases}\text { if } D(y, z)>0, & \text { then (2) has one real solution } X^{(1)}:=X^{(1)}(y, z) ; \\ \text { if } D(y, z)>0, & \text { then (2) has two real solutions } X^{(l)}:=X^{(l)}(y, z), l=1,2 ; \\ \text { if } D(y, z)<0, & \text { then (2) has three real solutions } X^{(l)}:=X^{(l)}(y, z), l=1,2,3 .\end{cases}$ and give explicit formulas (the so-called Cardano formulas) for these solutions. (Hint: for the case $D(y, z)<0$, we have $X^{(k)}=j^{k} u+\overline{j^{k} u}$ for $k=0,1,2$ where $j^{k} u, \overline{j^{k} u}$ are complex conjugate and $j:=\frac{-1+i \sqrt{3}}{2}$ is the classical third root of 1.)
(d) Show that there exists a polynomial $\tilde{f}\left(X_{2}, X_{3}, X_{4}\right) \in \mathbb{Z}\left[X_{2}, X_{3}, X_{4}\right]$ of degree 6 such that for any real closed field R and any $\left(x_{2}, x_{3}, x_{4}\right) \in R^{3}$, the polynomial $f\left(X_{1}, x_{2}, x_{3}, x_{4}\right) \in R\left[X_{1}\right]$ has:
(i) 1 real root if $\tilde{f}\left(x_{2}, x_{3}, x_{4}\right)>0$;
(ii) 2 real roots if $\tilde{f}\left(x_{2}, x_{3}, x_{4}\right)=0$;
(iii) 3 real roots if $\tilde{f}\left(x_{2}, x_{3}, x_{4}\right)<0$.

NB: we do not count multiplicity.
2. In the following exercise we will illustrate the Tarski-Seidenberg principle and its proof. Consider the following polynomials $\in \mathbb{Z}[T, X]$

$$
\left\{\begin{array}{l}
f_{1}(T, X)=T X^{2}+(T+1) X+1 \\
f_{2}(T, X)=X^{3}-3 T^{2} X+2 T^{3}
\end{array}\right.
$$

(a) Compute $g_{1}(T, X), g_{2}(T, X)$ respectively, the remainder of the euclidean division of $f_{2}(T, X)$ by $f_{1}(T, X), f_{2}^{\prime}(T, X)$ (the partial derivative of $f_{2}(T, X)$ with respect to X) respectively, in $\mathbb{Q}(T)[X]$.
(b) Compute the X-roots of $f_{1}(T, X), f_{2}^{\prime}(T, X), g_{1}(T, X)$ and $g_{2}(T, X)$ in terms of T.
(c) As an example, consider a real closed field R and $t \in R$ with $t \gg 1$. Denote by $x_{1}<x_{2}<\ldots<x_{5}$ the corresponding roots computed in the preceding question, $x_{0}:=-\infty, x_{6}:=+\infty$, and $\left.I_{k}:=\right] x_{k}, x_{k+1}[$ for $k=0, \ldots, 5$. Then:
(i) compute the sign matrix

$$
\operatorname{Sign}_{R}\left(f_{1}(t, X), f_{2}^{\prime}(t, X), g_{1}(t, X), g_{2}(t, X)\right)
$$

(where each row is $\operatorname{Sign}\left(f\left(I_{0}\right)\right), \operatorname{Sign}\left(f\left(x_{1}\right)\right), \ldots, \operatorname{Sign}\left(f\left(x_{5}\right)\right), \operatorname{Sign}\left(f\left(I_{5}\right)\right)$ for f being the corresponding function).
(ii) deduce the sign matrix

$$
\operatorname{Sign}_{R}\left(f_{1}(t, X), f_{2}(t, X)\right)
$$

(d) Denote $\tilde{f}_{1}(T, X):=T^{2} g_{1}(T, X)$ (note that multiplication by T^{2} is done to clear the denominator of $\left.g_{1}\right), \tilde{f}_{2}(T, X):=g_{2}(T, X), \tilde{f}_{3}(T, X):=f_{2}^{\prime}(T, X)$ and $\tilde{f}_{4}(T, X):=$ $f_{1}(T, X)$. Then resume the preceding method (compute $\tilde{f}_{3}^{\prime}, \tilde{g}_{1}, \ldots, \tilde{g}_{4}$ etc) until we obtain functions $\tilde{f}_{j}^{(k)}(T, X), j=1, \ldots, s_{k}$ for some step k and number s_{k} of functions, which do not depend on X anymore.
(e) Compute directly the X-roots of $f_{2}(T, X)$ in terms of T using Cardano formulas, deduce the sign matrix

$$
\operatorname{Sign}_{R}\left(f_{1}(t, X), f_{2}(t, X)\right) .
$$

in terms of t, and verify the preceding results.
NB: the case $t=0$ has to be treated separately.
(f) Conclude that for any real closed field R and any $t \in R$, the resolution of the semi-algebraic system

$$
\text { (I) }\left\{\begin{array}{l}
f_{1}(t, X)=t X^{2}+2 t X+1 \\
f_{2}(t, X)=\triangleright^{3}+3 t^{2} X+2 t^{3} \quad \triangleright_{2}
\end{array}\right.
$$

for some $\triangleright_{1}, \triangleright_{2} \in\{>, \geq,=, \neq\}$ is equivalent to t solution of a semi-algebraic system only in the variable T.

