Universität Konstanz
Fachbereich Mathematik und Statistik
Prof. Dr. Salma Kuhlmann
Mitarbeiter: Dr. Mickaël Matusinski
Büroraum F 409

mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 9 - Solution

Definition 0.1 A first order formula in the language of real closed fields is obtained as follows recursively:

1. if $f(\underline{x})=\mathbb{Q}\left[x_{1}, \ldots, x_{n}\right], n>1$, then $f(\underline{x}) \geq 0, f(\underline{x})>0, f(\underline{x})=0, f(\underline{x}) \neq 0$ are first order formulas (with free variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$);
2. if Φ and Ψ are first order formulas, then $\Phi \vee \Psi, \Phi \wedge \Psi$ and $\neg \Phi$ are also first order formulas (with free variables given by the union of the free variables of Φ and the free variables of Ψ);
3. if Φ is a first order formula then

$$
\exists x \Phi \text { and } \forall x \Phi
$$

are first order formulas (with same free variables as Φ minus $\{x\}$).
The formulas obtained using just 1. and 2. are called quantifier free.

Let R be a real closed field, $n \geq 1$. A subset $A \subset R^{n}$ is said to be definable (with parameters from R) in R if there is a first order formula $\Phi(\underline{t}, \underline{x})$ with parameters $\underline{t} \in R^{m}$ and free variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$, such that

$$
A=\left\{\underline{x} \in R^{n}: \Phi(\underline{t}, \underline{x}) \text { is true in } R\right\} .
$$

Proposition 0.2 For any real closed field R, the class of definable sets (with parameters) in R coincides with the class of semialgebraic sets.

Theorem 0.3 (Tarski's quantifier elimination theorem for real closed fields) Every first order formula in the language of real closed fields is equivalent to a quantifier free formula.

Theorem 0.4 (Tarski-Seidenberg, geometric version) Consider the projection map

$$
\begin{array}{rlll}
\Pi: & R^{m+n} & \rightarrow R^{m} \\
& (\underline{x}, \underline{y}) & \mapsto & \underline{x} .
\end{array}
$$

Then, for any semi-algebraic set $A \subset R^{m+n}, \Pi(A)$ is a semi-algebraic subset of R^{m}.

1. We suppose R endowed with the interval topology, which coincides with the euclidean topology (see Ü.B. 5).
(a) Let A be a semi-algebraic set, $A \subset R^{n}$ for some $n \in \mathbb{N}$.
(i) We have

$$
\begin{aligned}
\mathrm{Cl}(A)= & \left\{\underline{x} \in R^{n} \mid \forall t \in R, \underline{\exists} \underline{y} \in A,\left(\|\underline{x}-\underline{y}\|^{2}=\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}<t^{2} \text { or } t=0\right)\right\} ; \\
\operatorname{Int}(A)= & \left\{\underline{x} \in R^{n} \mid \exists t \in R, \forall \underline{y} \in R^{n},\left(\|\underline{x}-\underline{y}\|^{2}<t^{2} \Rightarrow y \in A \text { and } t \neq 0\right)\right\} ; \\
\partial A= & \left\{\underline{x} \in R^{n} \mid \forall t \in R, \exists \underline{y} \in A \text { and } \exists \underline{z} \notin A,\right. \\
& {\left.\left[\left(\|\underline{x}-\underline{y}\|^{2}<t^{2} \text { and }\|\underline{x}-\underline{z}\|^{2}<t^{2}\right) \text { or } t=0\right]\right\} ; }
\end{aligned}
$$

(ii) Consider the sets

$$
\begin{aligned}
& B_{1}:=\left\{(\underline{x}, \underline{y}, t) \in R^{2 n+1} \mid \underline{y} \in A \text { and }\left(\|\underline{x}-\underline{y}\|^{2}<t^{2} \text { or } t=0\right)\right\} ; \\
& B_{2}:=\left\{(\underline{x}, \underline{y}, t) \in R^{2 n+1} \mid \underline{y} \in R^{n} \backslash A \text { and }\left(\|\underline{x}-\underline{y}\|^{2}<t^{2} \text { or } t=0\right)\right\} ;
\end{aligned}
$$

and the following projections

$$
\begin{array}{llll}
\Pi_{1}: & R^{2 n+1} & \rightarrow & R^{n+1} \\
& (\underline{x}, \underline{y}, t) & \mapsto & (\underline{x}, t) ;
\end{array}
$$

and

$$
\begin{array}{llll}
\Pi_{2}: & R^{n+1} & \rightarrow & R^{n} \\
& (\underline{x}, t) & \mapsto & \underline{x} .
\end{array}
$$

Then we have

$$
\begin{aligned}
\mathrm{Cl}(A) & =R^{n} \backslash \Pi_{2}\left[R^{n+1} \backslash \Pi_{1}\left(B_{1}\right)\right] \\
\operatorname{Int}(A) & =\Pi_{2}\left[R^{n+1} \backslash \Pi_{1}\left(B_{2}\right)\right] \\
\partial A & =R^{n} \backslash \Pi_{2}\left[R^{n+1} \backslash \Pi_{1}\left(B_{1}\right)\right] \cap \Pi_{2}\left[R^{n+1} \backslash \Pi_{1}\left(B_{2}\right)\right]
\end{aligned}
$$

(b) Consider the following semi-algebraic set

$$
A:=\left\{(x, y) \in R^{2} \mid x^{3}-x^{2}-y^{2}>0\right\} .
$$

Remark that, for any $(x, y) \in R^{2}$, we have $x^{3}-x^{2}-y^{2}>0 \Leftrightarrow x^{2}(x-1)>y^{2}$. So, the closure $\mathrm{Cl}(A)$ of A is given by

$$
\mathrm{Cl}(A)\left\{(x, y) \in R^{2} \mid x^{3}-x^{2}-y^{2} \geq 0 \text { and } x \geq 1\right\} .
$$

which is equal to $B \backslash\{(0,0)\}$ where

$$
B:=\left\{(x, y) \in R^{2} \mid x^{3}-x^{2}-y^{2} \geq 0\right\}
$$

Note that the closure of a semi-algebraic set is not obtained just by relaxing the strict inequalities.
2. Let $A \subset R^{n}, B \subset R^{m}$ be semi-algebraic sets, $m, n \in \mathbb{N}^{*}$.
(a) Take a polynomial map

$$
\begin{array}{rlcc}
f: & A & \rightarrow & B \\
\underline{x} & \mapsto & \left(f_{1}(\underline{x}), \ldots, f_{m}(\underline{x})\right) .
\end{array}
$$

where $f_{i} \in R[\underline{X}], i=1, \ldots, m$. The graph of f is

$$
\Gamma(f):=\left\{(\underline{x}, \underline{y}) \in A \times B \mid \forall i=1, \ldots, m, f_{i}(\underline{x})=y_{i}\right\}
$$

which is indeed a semi-algebraic subset of R^{n+m} (and even an algebraic one);
(b) Take a regular rational map

$$
\begin{aligned}
f: \quad A & \rightarrow \\
\underline{x} & \mapsto\left(\frac{f_{1}(\underline{x})}{g_{1}(\underline{x})}, \ldots, \frac{f_{m}(\underline{x})}{g_{m}(\underline{x})}\right) .
\end{aligned}
$$

where $f_{i}, g_{i} \in R[\underline{X}], i=1, \ldots, m$. The graph of f is

$$
\Gamma(\bar{f}):=\left\{(\underline{x}, \underline{y}) \in A \times B \mid \forall i=1, \ldots, m, f_{i}(\underline{x})=y_{i} g_{i}(\underline{x})\right\}
$$

which is indeed a semi-algebraic subset of R^{n+m} (and even an algebraic one);
(c) Consider semi-algebraic maps $f: A \rightarrow R$ and $g: A \rightarrow R$ with corresponding graphs

$$
\begin{aligned}
& \Gamma(f):=\{(\underline{x}, y) \in A \times R \mid y=f(\underline{x})\} ; \\
& \Gamma(g):=\{(\underline{x}, y) \in A \times R \mid y=g(\underline{x})\} .
\end{aligned}
$$

This means that $y=f(\underline{x})$ and $y=g(\underline{x})$ are first order formulas. Then so are $f(\underline{x})-g(\underline{x}) \geq 0$ and its negation $g(\underline{x})-f(\underline{x})>0$. This means that the sets $\left\{(\underline{x}, y) \in R^{n+1} \mid f(\underline{x})-g(\underline{x}) \geq 0\right\}$ and $\left\{(\underline{x}, y) \in R^{n+1} \mid g(\underline{x})-f(\underline{x})>0\right\}$ are semialgebraic. Then we get that the following sets are also semi-algebraic:

$$
\begin{aligned}
\Gamma(\max (f, g))= & {\left[\left\{(\underline{x}, y) \in R^{n+1} \mid f(\underline{x})-g(\underline{x}) \geq 0\right\} \cap \Gamma(f)\right] } \\
& \cup\left[\left\{(\underline{x}, y) \in R^{n+1} \mid g(\underline{x})-f(\underline{x})>0\right\} \cap \Gamma(g)\right] ; \\
\Gamma(\min (f, g))= & {\left[\left\{(\underline{x}, y) \in R^{n+1} \mid f(\underline{x})-g(\underline{x}) \geq 0\right\} \cap \Gamma(g)\right] } \\
& \cup\left[\left\{(\underline{x}, y) \in R^{n+1} \mid g(\underline{x})-f(\underline{x})>0\right\} \cap \Gamma(f)\right] ; \\
\Gamma(|f|))= & {\left[\Gamma(\max (f, \overline{0})) \cap\left\{(\underline{x}, y) \in R^{n+1} \mid y>0\right\}\right] } \\
& \cup\left[\Gamma(\max (-f, \overline{0})) \cap\left\{(\underline{x}, y) \in R^{n+1} \mid y>0\right\}\right] \\
& \cup\left[\Gamma(f) \cap\left\{(\underline{x}, 0) \in R^{n+1}\right\}\right] ;
\end{aligned}
$$

where $\overline{0}$ denotes the map $A \rightarrow R$ with constant value 0 .
(d) Consider a semi-algebraic map $f: A \rightarrow R$ with $f \geq 0$. Thus

$$
\Gamma(f)=\{(\underline{x}, y) \in A \times R \mid y=f(\underline{x}) \text { and } y \geq 0\}
$$

is semi-algebraic, meaning that $(y=f(\underline{x})$ and $y \geq 0)$ is a first order formula. So we get that the set

$$
S:=\left\{(\underline{x}, y, z) \in A \times R \mid y=z^{2} \text { and } y=f(\underline{x}) \text { and } y \geq 0\right\}
$$

is also semi-algebraic. Denote

$$
\begin{array}{lccc}
\Pi: & R^{n+2} & \rightarrow & R^{n+1} \\
& (\underline{x}, y, z) & \mapsto & (\underline{x}, z) .
\end{array}
$$

By the geometric version of Tarski-Seidenberg theorem, we get that $\Gamma(\sqrt{f})=$ $\Pi(S)$ is semi-algebraic.
3. Let R be a real closed field, and $A \subset R^{m}, B \subset R^{n}, C \subset R^{p}$ and $D \subset R^{q}$ be some nonempty semi-algebraic sets, $m, n, p, q \in \mathbb{N}^{*}$.
(a) The following sets

$$
\begin{aligned}
& \Gamma(f):=\left\{(\underline{x}, \underline{y}) \in R^{m+n} \mid \underline{x} \in A \text { and } \underline{y}=f(\underline{x})\right\} ; \\
& \Gamma(g):=\left\{(\underline{y}, \underline{z}) \in R^{n+p} \mid \underline{y} \in B \text { and } \underline{z}=g(\underline{y})\right\}
\end{aligned}
$$

are semi-algebraic. So are the following sets

$$
\begin{aligned}
& \Gamma(f) \times R^{p}:=\left\{(\underline{x}, \underline{y}, \underline{z}) \in R^{m+n+p} \mid \underline{x} \in A \text { and } \underline{y}=f(\underline{x})\right\} ; \\
& R^{m} \times \Gamma(g):=\left\{(\underline{x}, \underline{y}, \underline{z}) \in R^{m+n+p} \mid \underline{y} \in B \text { and } \underline{z}=g(\underline{y})\right\} .
\end{aligned}
$$

(They are defined by first order formulas). So, $\left(\Gamma(f) \times R^{p}\right) \cap\left(R^{m} \times \Gamma(g)\right)$ is also semi-algebraic. Denote

$$
\begin{array}{rlll}
\Pi: \quad R^{m+n+p} & \rightarrow & R^{m+p} \\
(\underline{x}, \underline{y}, \underline{z}) & \mapsto & (\underline{x}, \underline{z}) .
\end{array}
$$

By the geometric version of Tarski-Seidenberg theorem, we get that

$$
\Gamma(g \circ f)=\Pi\left[\left(\Gamma(f) \times R^{p}\right) \cap\left(R^{m} \times \Gamma(g)\right)\right]
$$

is also semi-algebraic.;
(b) Considering the formulas

$$
\begin{aligned}
& \Gamma(f):=\left\{(\underline{x}, \underline{y}) \in R^{m+n} \mid \underline{x} \in A \text { and } \underline{y}=f(\underline{x})\right\} ; \\
& \Gamma(g):=\left\{(\underline{z}, \underline{t}) \in R^{p+q} \mid \underline{z} \in B \text { and } \underline{t}=g(\underline{z})\right\}
\end{aligned}
$$

we deduce that

$$
\begin{aligned}
\Gamma(f \times g) & :=\left\{(\underline{x}, \underline{z}, \underline{y}, \underline{t}) \in R^{m+p+n+q} \mid \underline{x} \in A \text { and } \underline{y}=f(\underline{x}) \text { and } \underline{z} \in B \text { and } \underline{t}=g(\underline{z})\right\} ; \\
& \simeq \Gamma(f) \times \Gamma(g) ;
\end{aligned}
$$

is also semi-algebraic (it is also defined by first order formulas).
(c) Let $f: A \rightarrow B$ be a semi-algebraic map.
(i) Consider a semi-algebraic subset $S \subset A$. Then the set $S \times B$ is semialgebraic, and therefore is $\Gamma(f) \cap(S \times B)$. Denote

$$
\begin{array}{llll}
\Pi_{2}: & R^{m+n} & \rightarrow & R^{n} \\
& (\underline{x}, \underline{y}) & \mapsto & \underline{y} .
\end{array}
$$

From the geometric version of Tarski-Seidenberg theorem we deduce that $f(S)=$ $\Pi_{2}[\Gamma(f) \cap(S \times B)]$ is also semi-algebraic.
(ii) Consider a semi-algebraic subset $T \subset B$. Then the set $A \times T$ is semialgebraic, and therefore is $\Gamma(f) \cap(A \times T)$. Denote

$$
\begin{array}{rlll}
\Pi_{1}: & R^{m+n} & \rightarrow & R^{m} \\
& (\underline{x}, \underline{y}) & \mapsto & \underline{x} .
\end{array}
$$

From the geometric version of Tarski-Seidenberg theorem we deduce that $f^{-1}(S)=$ $\Pi_{1}[\Gamma(f) \cap(A \times T)]$ is also semi-algebraic.
(d) Define $\mathcal{S}(A):=\left\{f: A \rightarrow R^{2} \mid f\right.$ is a semi-algebraic map $\}$. To prove that $\mathcal{S}(A)$ is a commutative ring, it remains to show that $\mathcal{S}(A)$ is closed under difference and multiplication.

Consider $f: A \rightarrow R$ and $g: A \rightarrow R$. The following maps

$$
\begin{array}{cccc}
+: & R^{2} & \rightarrow & R \\
*: & (x, y) & \mapsto & x+y . \\
* & R^{2} & \rightarrow & R \\
& (x, y) & \mapsto & x y . \\
- & R & \rightarrow & R \\
& x & \mapsto & -x .
\end{array}
$$

are semi-algebraic. Following the questions (a) and (b), so is the map

$$
\begin{array}{cccc}
f-g: & A & \rightarrow & R \\
& \underline{x} & \mapsto & f(\underline{x})-g(\underline{x})
\end{array}
$$

as it is the following composition

$$
\left.\begin{array}{cccccc}
A & \rightarrow & A \times A & \rightarrow & R \times R & \rightarrow \\
\underline{x} & \mapsto & (\underline{x}, \underline{x}) & \mapsto & (f(\underline{x}),-g(\underline{x})) & \mapsto
\end{array}\right) f(\underline{x})-g(\underline{x}) .
$$

Similarly, the multiplication is semi-algebraic as it is the following composition

$$
\begin{array}{cccccc}
A & \rightarrow & A \times A & \rightarrow & R \times R & \rightarrow \\
R \\
\underline{x} & \mapsto & (\underline{x}, \underline{x}) & \mapsto & (f(\underline{x}), g(\underline{x})) & \mapsto
\end{array} f(\underline{x}) g(\underline{x}) .
$$

