Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Mitarbeiter: Dr. Mickaël Matusinski Büroraum F 409 mickael.matusinski@uni-konstanz.de

Übungen zur Vorlesung Reelle algebraische Geometrie

Blatt 9

These exercises will be collected Tuesday 22 December in the mailbox number 15 of the Mathematics department.

Definition 0.1 A *first order formula* in the language of real closed fields is obtained as follows recursively:

- 1. if $f(\underline{x}) = \mathbb{Q}[x_1, \dots, x_n], n > 1$, then $f(\underline{x}) \ge 0$, $f(\underline{x}) > 0$, $f(\underline{x}) = 0$, $f(\underline{x}) \neq 0$ are first order formulas (with free variables $\underline{x} = (x_1, \dots, x_n)$);
- 2. *if* Φ *and* Ψ *are first order formulas, then* $\Phi \lor \Psi$, $\Phi \land \Psi$ *and* $\neg \Phi$ *are also first order formulas (with free variables given by the union of the free variables of* Φ *and the free variables of* Ψ *);*
- *3. if* Φ *is a first order formula then*

 $\exists x \Phi and \forall x \Phi$

are first order formulas (with same free variables as Φ minus {x}). The formulas obtained using just 1. and 2. are called **quantifier free**.

Let *R* be a real closed field, $n \ge 1$. A subset $A \subset \mathbb{R}^n$ is said to be **definable** (with parameters from *R*) in *R* if there is a first order formula $\Phi(\underline{t},\underline{x})$ with parameters $\underline{t} \in \mathbb{R}^m$ and free variables $\underline{x} = (x_1,...,x_n)$, such that

$$A = \{x \in \mathbb{R}^n : \Phi(t,x) \text{ is true in } \mathbb{R}\}.$$

Proposition 0.2 For any real closed field *R*, the class of definable sets (with parameters) in *R* coincides with the class of semialgebraic sets.

Theorem 0.3 (Tarski's quantifier elimination theorem for real closed fields) *Every first order formula in the language of real closed fields is equivalent to a quantifier free formula.*

Theorem 0.4 (Tarski-Seidenberg, geometric version) Consider the projection map

Then, for any semi-algebraic set $A \subset R^{m+n}$, $\Pi(A)$ is a semi-algebraic subset of R^m .

1. We suppose R endowed with the interval topology, which coincides with the euclidean topology (see Ü.B. 5).

(a) Show that the closure Cl(*A*), the interior Int(*A*) and the boundary ∂A of a semi-algebraic set $A (\subset \mathbb{R}^n$ for some *n*), are semi-algebraic:

(i) by giving a first order formula defining them;

(Hint: use the formal definition of a point belonging to a closed set;)

(ii) by a geometrical description.

(b) Describe the closure Cl(A) of the following semi-algebraic set

$$A = \{ (x,y) \in \mathbb{R}^2 \mid x^3 - x^2 - y^2 > 0 \}.$$

Note that the closure of a semi-algebraic set is not obtained just by relaxing the strict inequalities.

2. Let A, B be semi-algebraic sets. Show that:
(a) any polynomial map f : A → B is semi-algebraic;

(b) any regular rational map (i.e. a map whose coordinates are rational functions with denominators that vanish nowhere in *A*) $f : A \rightarrow B$ is semi-algebraic;

(c) if $f : A \to R$ and $g : A \to R$ are semi-algebraic maps, then so are the maps $\max(f,g), \min(f,g)$ and |f|;

(d) if $f : A \to R$ is semi-algebraic and $f \ge 0$, then so is \sqrt{f} .

3. Prove the following theorem:

Theorem 0.5 Let *R* be a real closed field, and *A*, *B*, *C* and *D* be some nonempty semi-algebraic sets. Then: (a) for any semi-algebraic maps $f : A \to B$ and $g : B \to C$, the map $g \circ f : A \to C$ is also semi-algebraic;

(b) for any semi-algebraic maps $f : A \to B$ and $g : C \to D$, the map $f \times g : A \times C \to B \times D$ $(a,c) \mapsto (f(a),g(c))$

is also semi-algebraic;

(c) Let $f : A \rightarrow B$ be a semi-algebraic map.

(i) For any semi-algebraic subset $S \subset A$, its image f(S) is also semi-algebraic. (ii) For any semi-algebraic subset $T \subset B$, its preimage $f^{-1}(T)$ is also semialgebraic.

(d) Define $S(A) := \{f : A \to R \mid f \text{ is a semi-algebraic map}\}$. Then S(A) endowed with pointwise addition and pointwise multiplication is a commutative ring.