VALUED FIELDS – EXERCISE 1

To be submitted on Wednesday 3.11.2010 by 14:00 in the mailbox.

Definition.

- (1) A ring A is called Noetherian if every ideal I is finitely generated.
- (2) Let A be a sub-ring of a field Ω . An element $\alpha \in \Omega$ is said to be integral over A if it satisfies a monic polynomial with coefficients from A: if there exists a relation of the form $\alpha^m + a_1 \alpha^{m-1} + \cdots + a_m = 0$ where $a_i \in A$.
- (3) A ring $A \subseteq B \subseteq \Omega$ is an integral extension of A if all its elements are integral over A.
- (4) The ring A is said to be *integrally closed in* Ω if every element of Ω which is integral over A is already in A.
- (5) A domain A is said to be *integrally closed* if it is integrally closed in its field of fractions.
- (6) A domain A is called a Dedekind domain if it satisfies the following conditions:
 - (a) It is integrally closed.
 - (b) Every nonzero prime ideal \mathfrak{p} in A is maximal.
 - (c) It is a Noetherian ring.
- (7) A fractional ideal in a domain A is a finitely generated A sub-module of quot (A) (the field of fractions).
- (8) If $x \in quot(A)$, then (x) is the fractional ideal generated by x, namely it is $xA = \{xa | a \in A\}.$
- (9) If I, J are fractional ideals, then their product is the module containing all finite sums of the form $\sum a_i b_i$ where $a_i \in I, b_i \in J$. (check that it is also a fractional ideal).

<u>Comments</u>: For us, a ring is always commutative, and an ideal is never the whole ring.

Question 1.

Let A be a ring. Prove that the following are equivalent:

- (1) A is Noetherian.
- (2) For every nonempty set of ideals of A, P, there is a maximal element.
- (3) There is no infinite increasing chain $I_0 \subsetneq I_1 \subsetneq I_2 \dots$ of ideals.

Question 2.

Let A be a sub-ring of a field Ω , and $\alpha \in \Omega$. Prove that the following are equivalent:

- (1) α is integral over A.
- (2) The ring generated by α over A, denoted A [α], is finitely generated as an A-module.
- (3) There exists a finitely generated nonzero A-module $M \subseteq \Omega$ such that $\alpha M \subseteq M$.

Hint: for (3) implies (1): Suppose M is generated by $\{\omega_1, \ldots, \omega_n\}$, and that $\alpha \omega_i = \sum_{j=1}^n a_{i,j} \omega_j$. Consider the matrix $B = \langle a_{i,j} \rangle$, show that α solves the monic polynomial $\mathfrak{m}(\mathbf{x}) = \det(B - \mathbf{x}I)$.

Question 3.

- (1) Conclude from Question 2 that if A ⊆ Ω, then the set {b ∈ Ω | b is integral over A} is a ring.
 Hint: Note that if A [α] and A [β] are finitely generated, then so is A [α, β].
- (2) Conclude from Question 2 that if A is a PID (principle ideal domain) then A is integrally closed.
 Hint: Suppose α = c/d ∈ quot (A) is integral over A, and let M be from
- (3). Show that M = (a/b) A for some a, b ∈ A.
 (3) Show directly from the definition that if A is a UFD (unique factorization domain) then it is integrally closed.
 Hint: Suppose α = c/d ∈ quot (A) is integral over A, and c/d is reduced, and m (α) = 0 where m is more a factorization and m (α) = 0.

and $\mathfrak{m}(\alpha) = 0$ where \mathfrak{m} is monic of degree \mathfrak{n} . Multiply both sides of the equation by $d^{\mathfrak{n}-1}$.

Question 4.

Suppose A is a Dedekind Domain. Let K = quot(A).

(1) Prove that every nonzero ideal I in A contains a product of nonzero prime ideals.

Hint: Suppose not. Let I be an ideal, maximal with properties: $I \neq 0$ and I does not contain a product of nonzero primes (why does it exist?). We may assume I is not prime, so there are $a, b \in A$ such that $a \cdot b \in I$ but $a, b \notin I$. Then I + (a), I + (b) strictly contain I, so they contain a product of nonzero primes. Now look at their product.

For a fractional ideal $0 \neq I$, define $I' = \{x \in K | xI \subseteq A\}$.

- (2) Show that I' is also a fractional ideal of A. Hint: for showing that I' is finitely generated: if $0 \neq c \in I$ then $I' \subseteq (1/c) A$, so as A is Noetherian, I' is finitely generated.
- (3) Suppose P is a nonzero prime. Show that $P' \not\subseteq A$.
 - Hint: We may assume P is not zero. Suppose $0 \neq a \in P$. By (1), there are nonzero primes, P_1, \ldots, P_r with r minimal such that $(a) \supseteq P_1 \ldots P_r$. It follows that $P \supseteq P_i$ for some i, so in fact $P = P_i$. Assume i = 1. By minimality, there is some $b \notin (a)$ but $b \in P_2 \ldots P_r$. But $(a) \supseteq P(b)$, so $b/a \in P' \setminus A$.
- (4) Suppose P is a nonzero prime. Show that P'P = A.
 Hint: it is enough to show that P'P ⊇ A. Suppose not, then show that P'P = P. Then by Question 2, show that every element of P' is integral over A, and thus P' ⊆ A.