VALUED FIELDS - EXERCISE 1

To be submitted on Wednesday 3.11 .2010 by 14:00 in the mailbox.

Definition.

(1) A ring A is called Noetherian if every ideal I is finitely generated.
(2) Let \mathcal{A} be a sub-ring of a field Ω. An element $\alpha \in \Omega$ is said to be integral over A if it satisfies a monic polynomial with coefficients from A : if there exists a relation of the form $\alpha^{m}+a_{1} \alpha^{m-1}+\cdots+a_{m}=0$ where $a_{i} \in A$.
(3) A ring $A \subseteq B \subseteq \Omega$ is an integral extension of A if all its elements are integral over A.
(4) The ring A is said to be integrally closed in Ω if every element of Ω which is integral over A is already in A.
(5) A domain A is said to be integrally closed if it is integrally closed in its field of fractions.
(6) A domain A is called a Dedekind domain if it satisfies the following conditions:
(a) It is integrally closed.
(b) Every nonzero prime ideal \mathfrak{p} in \mathcal{A} is maximal.
(c) It is a Noetherian ring.
(7) A fractional ideal in a domain A is a finitely generated A sub-module of quot (A) (the field of fractions).
(8) If $x \in$ quot (A), then (x) is the fractional ideal generated by x, namely it is $x A=\{x a \mid a \in A\}$.
(9) If I, J are fractional ideals, then their product is the module containing all finite sums of the form $\sum a_{i} b_{i}$ where $a_{i} \in I, b_{i} \in J$. (check that it is also a fractional ideal).
Comments: For us, a ring is always commutative, and an ideal is never the whole ring.

Question 1.

Let A be a ring. Prove that the following are equivalent:
(1) A is Noetherian.
(2) For every nonempty set of ideals of A, P, there is a maximal element.
(3) There is no infinite increasing chain $\mathrm{I}_{0} \subsetneq \mathrm{I}_{1} \subsetneq \mathrm{I}_{2} \ldots$ of ideals.

Question 2.

Let A be a sub-ring of a field Ω, and $\alpha \in \Omega$. Prove that the following are equivalent:
(1) α is integral over A.
(2) The ring generated by α over A, denoted $A[\alpha]$, is finitely generated as an A-module.
(3) There exists a finitely generated nonzero A-module $M \subseteq \Omega$ such that $\alpha M \subseteq$ M.

Hint: for (3) implies (1): Suppose M is generated by $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$, and that $\alpha \omega_{i}=\sum_{j=1}^{n} a_{i, j} \omega_{j}$. Consider the matrix $B=\left\langle a_{i, j}\right\rangle$, show that α solves the monic polynomial $m(x)=\operatorname{det}(B-x I)$.

Question 3.

(1) Conclude from Question 2 that if $A \subseteq \Omega$, then the set $\{b \in \Omega \mid b$ is integral over $A\}$ is a ring.
Hint: Note that if $A[\alpha]$ and $A[\beta]$ are finitely generated, then so is $A[\alpha, \beta]$.
(2) Conclude from Question 2 that if A is a PID (principle ideal domain) then A is integrally closed.
Hint: Suppose $\alpha=c / d \in$ quot (A) is integral over A, and let M be from (3). Show that $M=(a / b) A$ for some $a, b \in A$.
(3) Show directly from the definition that if \mathcal{A} is a UFD (unique factorization domain) then it is integrally closed.
Hint: Suppose $\alpha=c / d \in$ quot (A) is integral over A, and c / d is reduced, and $m(\alpha)=0$ where m is monic of degree n. Multiply both sides of the equation by $\mathrm{d}^{\mathrm{n}-1}$.

Question 4.

Suppose A is a Dedekind Domain. Let $K=$ quot (A).
(1) Prove that every nonzero ideal I in \mathcal{A} contains a product of nonzero prime ideals.
Hint: Suppose not. Let I be an ideal, maximal with properties: $I \neq 0$ and I does not contain a product of nonzero primes (why does it exist?). We may assume I is not prime, so there are $a, b \in A$ such that $a \cdot b \in I$ but $a, b \notin I$. Then $I+(a), I+(b)$ strictly contain I, so they contain a product of nonzero primes. Now look at their product.

For a fractional ideal $0 \neq I$, define $I^{\prime}=\{x \in K \mid x I \subseteq A\}$.
(2) Show that I^{\prime} is also a fractional ideal of A.

Hint: for showing that I^{\prime} is finitely generated: if $0 \neq c \in I$ then $I^{\prime} \subseteq(1 / c) A$, so as \mathcal{A} is Noetherian, I^{\prime} is finitely generated.
(3) Suppose P is a nonzero prime. Show that $P^{\prime} \nsubseteq A$.

Hint: We may assume P is not zero. Suppose $0 \neq a \in P$. By (1), there are nonzero primes, P_{1}, \ldots, P_{r} with r minimal such that $(a) \supseteq P_{1} \ldots P_{r}$. It follows that $P \supseteq P_{i}$ for some i, so in fact $P=P_{i}$. Assume $i=1$. By minimality, there is some $b \notin(a)$ but $b \in P_{2} \ldots P_{r}$. But $(a) \supseteq P(b)$, so $b / a \in P^{\prime} \backslash A$.
(4) Suppose P is a nonzero prime. Show that $P^{\prime} P=A$. Hint: it is enough to show that $P^{\prime} P \supseteq A$. Suppose not, then show that $P^{\prime} P=P$. Then by Question 2, show that every element of P^{\prime} is integral over A, and thus $\mathrm{P}^{\prime} \subseteq A$.

