Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

VALUED FIELDS – EXERCISE 10

To be submitted on Wednesday 19.1.2011 by 14:00 in the mailbox.

Definition.

- (1) Two valuation rings $O_1, O_2 \subseteq K$ are called *dependent* iff $O_1 \cdot O_2 \neq K$.
- (2) A field K of char. p > 0 is called *perfect* if $K^p = K$.
- (3) An irreducible polynomial $f \in K[X]$ is called *separable* if $f'(X) \neq 0$.
- (4) A polynomial is called separable if all its irreducible factors are.
- (5) Let $k \subseteq K$ be fields. An element $x \in K$ is called separable over k if the minimal polynomial of x is separable over k.
- (6) An extension K/k is called separable if every element of K is separable over k.
- (7) A field $k \subseteq K$ is called *separably closed* in K if for every $x \in K$, if x is separable over k then $x \in k$.

Question 1.

Let R be a Dedekind Domain.

(1) Suppose $\mathfrak{p}_1, \mathfrak{p}_2$ are distinct prime ideals. Show that the corresponding \mathfrak{p}_i -adic valuations are independent.

Hint: Suppose $y \in R$. You have to show that $1/y \in R_{p_1} \cdot R_{p_2}$. Reduce to the case where $y \in \mathfrak{p}_1 \cdot \mathfrak{p}_2$ (recalling that $\mathfrak{p}_1 \cap \mathfrak{p}_2 = \mathfrak{p}_1 \cdot \mathfrak{p}_2$). Then $(1/y) = \mathfrak{p}'_1 \cdot \mathfrak{p}'_2 \cdot \mathfrak{p}'_3 \dots \cdot \mathfrak{p}'_n$ where $\mathfrak{p}_3, \dots, \mathfrak{p}_n$ are prime ideals of R (recall the notation from Exercise 1 and 2). Show that in general, if $\mathfrak{p}, \mathfrak{q}$ are distinct prime ideals, then $\mathfrak{p}' \subseteq R_{\mathfrak{q}}$ and $\mathfrak{q}' \subseteq R_{\mathfrak{p}}$ and conclude. (See also the hint to Question 3, clause 3 of Exercise 2).

(2) Recall the approximation theorem from class. Deduce from it the following: Suppose R is a Dedekind Domain, $\mathfrak{p}_1, \ldots, \mathfrak{p}_n$ are distinct prime ideals. Then for any choice of $\mathfrak{m}_1, \ldots, \mathfrak{m}_n \in \mathbb{Z}$ and $\mathfrak{a}_1, \ldots, \mathfrak{a}_n \in K$, there is some $x \in K :=$ quot (R) such that if $(x - \mathfrak{a}_i) = \mathfrak{q}_1^{k_1} \ldots \mathfrak{q}_l^{k_l}$ is the unique prime factorization (with $k_j \in \mathbb{Z}$) then for some $j \leq l$, $\mathfrak{p}_i = \mathfrak{q}_j$ and $k_j \geq \mathfrak{m}_i$.

Question 2.

Let F be a field of characteristic p > 0.

(1) Suppose $a \in F$, but $a^{1/p} \notin F$. Show that the polynomial $X^p - a$ is irreducible in F[X].

Hint: Suppose it is reducible. Deduce that for some l < p, $a^{l/p} \in F$. But remember that there is some $c, d \in \mathbb{Z}$ such that cl + dp = 1.

- (2) Show even more: the polynomial $X^{p^e} a$ is irreducible in F[X] for all $e \in \mathbb{N}$. Hint: use induction on e. For e = 0 it is obvious. For e+1, let $K = F(a^{1/p})$. By induction $X^{p^e} - a^{1/p}$ is irreducible in K[X]. So if $X^{p^{e+1}} - a$ is $f \cdot g$, then both f, g are products of $X^{p^e} - a^{1/p}$. This means that after substituting $Y = X^{p^e}$, the polynomial $Y^p - a$ is reducible in F[Y].
- (3) Show that if F is perfect, then every polynomial f over F is separable. Hint: let f be irreducible. By what you showed in class, if f is not separable, then $f \in F[X^p]$.

(4) Show that if every polynomial f over F is separable, then F is perfect.

Question 3.

(1) Let $K \subseteq L \subseteq F$ be fields. Suppose that the extensions L/K and F/L are finite. Show that F/K is a separable extension iff L/K and F/L are both separable.

Hint: use the characterization of separable extensions showed in class (a finite extension K/k is separable iff $kK^p = K$).

- (2) Let $K \subseteq L$ be fields. Show that if $x_1, \ldots, x_n \in L$ are separable over K, then $K(x_1, \ldots, x_n)$ is separable over K.
- (3) Show that if $k \subseteq K$ are fields, and $k_0 = \{x \in K | x \text{ is separable over } k\}$ then k_0 is a field, and that it is separably closed in K.
- (4) Show (1) without the assumption that the extensions are finite.

Question 4.

Let K be a field. Suppose $f \in K[X]$. Show that f is separable iff (f, f') = 1 (where (f, f') is the gcd) iff f has only simple roots (i.e. if f(a) = 0 in some field extension, then $(X - a)^2$ does not divide f).