Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

VALUED FIELDS – EXERCISE 12

To be submitted on Wednesday 2.2.2011 by 14:00 in the mailbox.

Definition.

- (1) We say a valued field (K_2, ν_2) is an *extension* of (K_1, ν_1) when $O_1 = K_1 \cap O_2$. Denote this by $(K_1, \nu_1) \subseteq (K_2, \nu_2)$.
- (2) Suppose (K_1, v_1) is a valued field. We call an extension of fields $K_2 \supseteq K_1$ finite-valued if there are only finitely many valuations v_2 such that $(K_2, v_2) \supseteq (K_1, v_1)$.

Question 1.

The aim of this question is to prove the following lemma:

• Suppose $K_1 \subseteq K_2$ is an algebraic extension. Suppose ν is a valuation of K_1 (with valuation ring O_1), and u, u' are two valuations of K_2 (with valuation rings O', O'') such that $(K_1, \nu) \subseteq (K_2, u)$ and $(K_1, \nu) \subseteq (K_2, u')$. Suppose $O' \subseteq O''$. Then O' = O''.

Use the following steps:

Let $\mathfrak{m}', \mathfrak{m}''$ be the maximal ideals of O', O'' resp. We know that $\mathfrak{m}'' \subseteq \mathfrak{m}'$ (why?). Let $k'' = O''/\mathfrak{m}''$, and let $o' = O'/\mathfrak{m}''$.

- (1) Let $k=O_1/\mathfrak{m}.$ Deduce that $k\subseteq o'\subseteq k''$ and that the extension k''/k is algebraic.
- (2) Conclude that o' is a field and hence m' = m'' and finish. (Hint: see Question 3, clause (3) in Exercise 5).

Question 2.

- (1) Show that if K_2/K_1 is finite-valued then the field extension K_2/K_1 is algebraic.
- (2) Suppose K_2/K_1 is finite. Show that the map $\Delta \mapsto \Delta \cap \Gamma_1$ is an inclusion preserving bijection between the set of all convex subgroups of Γ_2 onto the set of all convex subgroups of Γ_1 , and conclude that the rank of K_1 equals the rank of K_2 .

Question 3.

Suppose ν is a non-trivial valuation on \mathbb{R} . Show that the residue field k is algebraically closed and that the valuation group Γ is a divisible group (i.e. if $\gamma \in \Gamma$ and $n \in \mathbb{N}$ then there exists $\gamma' \in \Gamma$ such that $n\gamma' = \gamma$).

Hint: use the same hint from Exercise 11, Question 3, and think.

Question 4.

(1) In class you have seen the following lemma: Suppose O_1, \ldots, O_n are valuation rings of a field K with m_1, \ldots, m_n maximal ideals. Let $R = \bigcap_{1 \le i \le n} O_i$ and $p_i = R \cap m_i$. Then for all $1 \le i \le n$, $O_i = R_{p_i}$. Give an easy proof of this lemma when there is some i such that $O_i \subseteq O_j$ for all j.

(2) Find 2 valuation rings of some field ${\sf K}$ whose intersection is not a valuation ring.