VALUED FIELDS - EXERCISE 12

To be submitted on Wednesday 2.2 .2011 by $14: 00$ in the mailbox.

Definition.

(1) We say a valued field $\left(\mathrm{K}_{2}, v_{2}\right)$ is an extension of $\left(\mathrm{K}_{1}, v_{1}\right)$ when $\mathrm{O}_{1}=\mathrm{K}_{1} \cap \mathrm{O}_{2}$. Denote this by $\left(K_{1}, v_{1}\right) \subseteq\left(K_{2}, v_{2}\right)$.
(2) Suppose $\left(\mathrm{K}_{1}, v_{1}\right)$ is a valued field. We call an extension of fields $\mathrm{K}_{2} \supseteq$ K_{1} finite-valued if there are only finitely many valuations v_{2} such that $\left(\mathrm{K}_{2}, v_{2}\right) \supseteq\left(\mathrm{K}_{1}, v_{1}\right)$.

Question 1.

The aim of this question is to prove the following lemma:

- Suppose $K_{1} \subseteq K_{2}$ is an algebraic extension. Suppose v is a valuation of K_{1} (with valuation ring O_{1}), and $\mathfrak{u}, \mathrm{u}^{\prime}$ are two valuations of K_{2} (with valuation rings $\left.\mathrm{O}^{\prime}, \mathrm{O}^{\prime \prime}\right)$ such that $\left(\mathrm{K}_{1}, v\right) \subseteq\left(\mathrm{K}_{2}, \mathfrak{u}\right)$ and $\left(\mathrm{K}_{1}, v\right) \subseteq\left(\mathrm{K}_{2}, \mathrm{u}^{\prime}\right)$. Suppose $\mathrm{O}^{\prime} \subseteq \mathrm{O}^{\prime \prime}$. Then $\mathrm{O}^{\prime}=\mathrm{O}^{\prime \prime}$.
Use the following steps:
Let $\mathrm{m}^{\prime}, \mathrm{m}^{\prime \prime}$ be the maximal ideals of $\mathrm{O}^{\prime}, \mathrm{O}^{\prime \prime}$ resp. We know that $\mathrm{m}^{\prime \prime} \subseteq \mathrm{m}^{\prime}$ (why?). Let $k^{\prime \prime}=\mathrm{O}^{\prime \prime} / \mathrm{m}^{\prime \prime}$, and let $\mathrm{o}^{\prime}=\mathrm{O}^{\prime} / \mathrm{m}^{\prime \prime}$.
(1) Let $k=O_{1} / m$. Deduce that $k \subseteq o^{\prime} \subseteq k^{\prime \prime}$ and that the extension $k^{\prime \prime} / k$ is algebraic.
(2) Conclude that o^{\prime} is a field and hence $m^{\prime}=m^{\prime \prime}$ and finish. (Hint: see Question 3, clause (3) in Exercise 5).

Question 2.

(1) Show that if K_{2} / K_{1} is finite-valued then the field extension K_{2} / K_{1} is algebraic.
(2) Suppose K_{2} / K_{1} is finite. Show that the map $\Delta \mapsto \Delta \cap \Gamma_{1}$ is an inclusion preserving bijection between the set of all convex subgroups of Γ_{2} onto the set of all convex subgroups of Γ_{1}, and conclude that the rank of K_{1} equals the rank of K_{2}.

Question 3.

Suppose v is a non-trivial valuation on \mathbb{R}. Show that the residue field k is algebraically closed and that the valuation group Γ is a divisible group (i.e. if $\gamma \in \Gamma$ and $n \in \mathbb{N}$ then there exists $\gamma^{\prime} \in \Gamma$ such that $n \gamma^{\prime}=\gamma$).
Hint: use the same hint from Exercise 11, Question 3, and think.

Question 4.

(1) In class you have seen the following lemma: Suppose $\mathrm{O}_{1}, \ldots, \mathrm{O}_{n}$ are valuation rings of a field K with m_{1}, \ldots, m_{n} maximal ideals. Let $R=\bigcap_{1 \leqslant i \leqslant n} O_{i}$ and $p_{i}=R \cap m_{i}$. Then for all $1 \leqslant i \leqslant n, O_{i}=R_{p_{i}}$. Give an easy proof of this lemma when there is some i such that $O_{i} \subseteq O_{j}$ for all j.
(2) Find 2 valuation rings of some field K whose intersection is not a valuation ring.

