Prof. Dr. Salma Kuhlmann

VALUED FIELDS – EXERCISE 13

To be submitted on Wednesday 9.2.2011 by 14:00 in the mailbox.

Definition.

- (1) Let K be a field. A polynomial $f \in K[X]$ is said to *split* over K if f can be written as a product of linear polynomials, in other words, if $f = a \prod (X b_i)$ for some $a, b_i \in K$.
- (2) We say a field extension $K_2 \supseteq K_1$ is *normal* if it is algebraic and every irreducible polynomial over K_1 that has a root in K_2 splits over K_2 .
- (3) Suppose $L \supseteq K$ is a field extension. We denote by Aut (L/K) the group of automorphisms of L that fix K.

Question 1.

Suppose N/K is a normal extension, and let F_1, F_2 be two subfields of N containing K. Let $\psi: F_1 \to F_2$ be an isomorphism of fields that fixes K.

(1) Suppose $\beta \in N$. Prove that there are extensions $F'_1 \supseteq F_1$ and $F'_2 \supseteq F_2$ (both contained in N) and an isomorphism extending ψ , $\psi' : F'_1 \to F'_2$ such that $\beta \in F'_1$.

Hint: let f be the minimal polynomial of β over F_1 , show that $\psi(f)$ is irreducible over F_2 , and that $\psi(f)$ divides the minimal polynomial of β over K.

- (2) Suppose $\beta \in N$. Prove that there are extensions $F'_1 \supseteq F_1$ and $F'_2 \supseteq F_2$ (both contained in N) and an isomorphism extending $\psi, \psi' : F'_1 \to F'_2$ such that $\beta \in F'_2$.
- (3) Use Zorn's lemma to show that there is an extension of ψ to an automorphism of N fixing K. Hint: define the set

$$\{(\mathsf{F}_1',\mathsf{F}_2',\psi') | \mathsf{F}_1 \subseteq \mathsf{F}_1' \subseteq \mathsf{N}, \mathsf{F}_2 \subseteq \mathsf{F}_2' \subseteq \mathsf{N}, \psi \subseteq \psi' : \mathsf{F}_1' \tilde{\rightarrow} \mathsf{F}_2'\}.$$

Question 2.

Let N/K be a normal extension. Let $K^{\mbox{sep}}$ be the separable closure of K inside N.

- (1) Show that K^{sep}/K is normal.
- (2) Let $G = \operatorname{Aut}(N/K)$, and $H = \operatorname{Aut}(K^{\operatorname{sep}}/K)$. Show that the restriction map

$$\psi \mapsto \psi|_{\kappa sep}$$

is a well defined isomorphism from G to H. Hint: use Question 1 for surjectivity and (1) for well-definiteness. For injectitivity, note that if $x \in N$, then if the char. of K is p, then for some $e, x^{p^e} \in K^{sep}$.

Question 3.

Under the assumptions of Question 2, suppose that (K, O) is a valued field.

(1) Suppose that

Show that \star (N) is also true (i.e. after replacing K^{sep} by N).

(2) Deduce from a theorem proved in class that \star (N) is true for all finite normal extensions N/K.

Question 4.

Let $L \supseteq K$ be an algebraic extension. Let O be a valuation ring of K. Let R be the integral closure of O in L and let O' be an extension of O to L. Let M be the maximal ideal of O' and let $m = R \cap M$. Show that $R_m = O'$. Hints:

- (1) First show $R_m \subseteq O'$.
- (2) For the other direction, suppose $\alpha \in O'$. By letting $L' = K(\alpha)$, show that you can reduce to the situation where L/K is finite.
- (3) Show that in general, if $L \subseteq F$ is a field extension, O_L a valuation ring on L (with maximal ideal $\mathfrak{m}_L)$ and $O_F \supseteq O_L$ is a valuation ring on F (with maximal ideal $\mathfrak{m}_F)$ then $(L,O_L) \subseteq (F,O_F)$ (i.e. $O_F \cap L = O_L)$ iff $\mathfrak{m}_F \cap O_L = \mathfrak{m}_L.$
- (4) Deduce that in the situation of (1), the integral closure of O_L in F is the intersection of all valuation rings of O_F of F such that $(L, O_L) \subseteq (F, O_F)$. (Hint: find a theorem about places that we had earlier in the semester).
- (5) Now use a lemma given in class to conclude.