VALUED FIELDS - EXERCISE 14

Definition.

(1) Suppose $(G,+)$ is an abelian group. An element x is called torsion if there exists some $n \in \mathbb{N}$ such that $n x=x+\ldots+x=0$.
(2) An abelian group G is divisible if and only if for every positive integer n and every g in G , there exists y in G such that $\mathrm{ny}=\mathrm{g}$.

Question 1.

This question deals with the divisible hull of a group.
(1) Recall Question 1 from Exercise 5. Suppose M is a module over a commutative ring R. Let S be a multiplicative subset of R. Define $S^{-1} M$. Show that it is a module over $S^{-1} R$.
(2) Let G be an abelian group. Think of G as a module over \mathbb{Z}. Let $S=$ $\{x \in \mathbb{Z} \mid x \neq 0\}$. Let $\mathrm{G}^{\mathrm{d}}=\mathrm{S}^{-1} \mathrm{G}$. This is the divisible hull of G . Show that it is a \mathbb{Q}-vector space.
(3) Let T be the group of all torsion elements in G. Show that the map G/T \rightarrow G^{d} defined by $\mathrm{g}+\mathrm{T} \mapsto \mathrm{g} / 1$ is an injective group homomorphism.
(4) Show that G^{d} is torsion free.
(5) Show that for every group homomorphism $\varphi: G \rightarrow G^{\prime}$ induces naturally a homomorphism (which we shall also call φ) from G / T to G^{\prime} / T^{\prime} where T^{\prime} is the torsion group in G^{\prime}.
(6) Show that for any φ as above where G^{\prime} is divisible, there is a unique $\psi: \mathrm{G}^{\mathrm{d}} \rightarrow \mathrm{G}^{\prime} / \mathrm{T}^{\prime}$ such that $\psi(\mathrm{g} / 1)=\varphi(\mathrm{g}+\mathrm{T})$ for all $\mathrm{g} \in \mathrm{G}$.
(7) Conclude that if G is torsion free, for instance if G is an ordered group, then $G \subseteq G^{d}$ and write down the universal property (as in (6)) that G^{d} has.
(8) Show that if G is ordered by \leqslant, then there is a unique order that extends \leqslant that makes G^{d} into an ordered abelian group.

Question 2.

Let $\operatorname{rr}(G)=\operatorname{dim}_{\mathbb{Q}}\left(G^{d}\right)$.
(1) Show that $\operatorname{rr}\left(\mathbb{Z}^{n}\right)=n, \operatorname{rr}(\mathbb{Q})=1, \operatorname{rr}(\mathbb{R})=\infty$.
(2) Show that if T is the torsion group of G then $\operatorname{rr}(G)=\operatorname{rr}(G / T)$.
(3) Show that this rank (the rational rank) is preserved under isomorphism of groups.
(4) Show that rr (G) equals to the maximal size of a finite \mathbb{Z}-independent set $S \subseteq G$ (i.e. if $a_{s} \in \mathbb{Z}$ for $s \in S$, then $\sum a_{s} s=0 \Rightarrow \forall s\left(a_{s}=0\right)$). In particular, any such set is of the same size.
(5) Show that if $H \leqslant G$ then $\operatorname{rr}(G)=\operatorname{rr}(H)+\operatorname{rr}(G / H)$.

Question 3.

Let K be an algebraically closed valued field, L a valued field extension, $\mathrm{L}=$ $K(t), t \notin K$. Since any element of $K[t]$ is a product of linear factors, the valuation on L is determined by $v(t-a)$ for $a \in K$. Show that one of the following holds:
(1) $v(t-a)=\gamma \notin \Gamma(\mathrm{K})$ for some $a \in K$. Show that $\Gamma(\mathrm{L})=\Gamma(\mathrm{K})+\mathbb{Z} \gamma$, $k(\mathrm{~L})=\mathrm{k}(\mathrm{K})$. (Hint: Use 2.2.3).
(2) $v(t-a) \in \Gamma(K)$ for all $a \in K$, and $v(t-a)$ takes a maximal value $v(b)$ at some $a, b \in K$. Show that $k(L)=k(K)(e)$ where $e=\overline{((t-a) / b)}$. (Hint: show that $e \notin k(K)$, and use 2.2.2 and Exercise 11, Question 3).
(3) $v(t-a) \in \Gamma(\mathrm{K})$ for all $a \in K$, and a maximum is not attained. Show that $\mathrm{K}(\mathrm{t})$ is an immediate extension. Hint: $0=v((\mathrm{t}-\mathrm{a}) / \mathrm{b})<v\left(\left(\mathrm{t}-\mathrm{a}^{\prime}\right) / \mathrm{b}\right)$ so $v\left((t-a) / b+\left(a-a^{\prime}\right) / b\right)>0$.

Question 4.

Give a new proof of the dimension inequality using the previous Question: Let L / K be an extension of valued fields. Then $\operatorname{tr} \cdot \operatorname{deg}(\mathrm{k}(\mathrm{L}) / \mathrm{k}(\mathrm{K}))+\operatorname{rr}(\Gamma(\mathrm{L}) / \Gamma(\mathrm{K})) \leqslant$ tr.deg (L/K).
Hints:
(1) First show that it is enough to prove it for the case where L is finitely generated (as a field) over K.
(2) Show that it is enough to prove it for the case where $L=K(t)$ for some $t \notin K$. (Hint: use the following fact $-\operatorname{tr} . \operatorname{deg}\left(L_{2} / L_{0}\right)=\operatorname{tr} . \operatorname{deg}\left(L_{2} / L_{1}\right)+$ $\operatorname{tr} . \operatorname{deg}\left(\mathrm{L}_{1} / \mathrm{L}_{0}\right)$ for fields $\mathrm{L}_{0} \subseteq \mathrm{~L}_{1} \subseteq \mathrm{~L}_{2}$, and use Question 2 (5)).
(3) Show that the inequality holds in the case where t is algebraic over K (Hint: use the fact that $k(\mathrm{~L}) / k(\mathrm{~K})$ is algebraic and that $\Gamma(\mathrm{L}) / \Gamma(\mathrm{K})$ is torsion).
(4) Assume t is transcendental. Show that it is enough to prove it for the case where K is algebraically closed (Hint: show that this does not change right hand side, and left hand side can only increase: note that we only added algebraic elements to $k(K)$ and torsion elements to $\Gamma(K))$.
(5) Use Question 3 to finish.

