Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

VALUED FIELDS – EXERCISE 3

To be submitted on Wednesday 24.11.2010 by 14:00 in the mailbox.

Definition.

- (1) A domain R is called a valuation ring if for any $x \in quot(R)$, either $x \in R$ or $1/x \in R$.
- (2) A ring R is called local if it has a unique maximal ideal.

Question 1.

Prove directly from the definitions that every valuation ring is local.

Possible hint: It is enough to prove that if I is an ideal, x is not invertible in R, then $I + (x) \neq R$, hence it is enough to show that if x is not invertible then 1 + x is invertible.

The following definition is an abstraction of the notion of algebraic dependence, which we will lead us in Question 3 to the notion of transcendental degree of a ring.

Definition.

- (1) A pregeometry consists of a set X, and a function cl (called closure) cl : $\mathcal{P}(X) \rightarrow \mathcal{P}(X)$ that satisfies the following conditions for all $a, b \in X$ and all $Y, Z \subseteq X$:
 - (a) $Y \subseteq cl(Y)$
 - (b) If $Y \subseteq Z$, then $cl(Y) \subseteq cl(Z)$.
 - (c) $\operatorname{cl}(\operatorname{cl}(Y)) = \operatorname{cl}(Y)$.
 - (d) (finite character) If $a\in {\rm cl}(Y)$, then there is a finite subset $Y'\subseteq Y$ such that $a\in {\rm cl}(Y').$
 - (e) (exchange principle) If $a \in cl(Y \cup \{b\}) \setminus cl(Y)$, then $b \in cl(Y \cup \{a\})$.

Question 2.

Suppose cl is a pregeometry on a set X. Say a subset $B \subseteq X$ is independent if for each $b \in B$, $b \notin cl(B \setminus \{b\})$. B is said to be a basis of X if it is independent and cl(B) = X.

- (1) Suppose cl is a pregeometry on a set X, and $Y \subseteq X$. Define $cl_Y(Z) = cl(Z) \cap Y$. Show that cl_Y is pregeometry on Y.
- (2) Show that if $B = \{a_i | i = 1, ..., n\}$ is such that $a_i \notin cl(\{a_1, ..., a_{i-1}\})$ for every i, then B is an independent set.
- (3) Show that for every pregeometry X, a basis B always exists and in fact any independent set can be extended into a basis. Hint: take as basis a maximal independent set.
- (4) Show that if B' and B are basis of X and $|B| < \infty$, then |B| = |B'|.
- (5) Bonus: Show (4) without any assumption on |B|.

Definition. For a pregeometry cl on a set X, and for $Y \subseteq X$, define $\dim_{cl}(Y)$ to be the cardinality of any basis of Y in the pregeometry cl_Y .

Question 3.

(1) Let k be a field, and $K \supseteq k$. For a set $X \subseteq K$, define

 $\operatorname{cl}_{k}(X) = \{ y \in K | y \text{ is algebraic over } k(X) \}.$

Prove that cl is a pregeometry on subsets of K.

Hint: note that $\{a_1, \ldots, a_n\} \subseteq K$ is independent iff there is no polynomial $p(X_1, \ldots, X_n)$ over k such that $p(a_1, \ldots, a_n) = 0$.

(2) Suppose now that $K \supseteq R \supseteq k$ is a ring, such that K = quot(R). Show that if B is a basis for R in $(cl_k)_R$ (see Question 1, clause (1)), then B is also a basis for K in cl_k .

Namely, you should show that every element of K is algebraic over $k\left(B\right).$

 $\begin{array}{l} \textbf{Definition.} \ \mathrm{For} \ \mathrm{a} \ \mathrm{domain} \ R \ \mathrm{containing} \ \mathrm{a} \ \mathrm{field} \ k, \ \mathrm{let} \ \mathrm{tr.deg}_k \ (R) = \dim_{\mathrm{cl}_k} \ (R) \\ (\mathrm{the} \ \mathrm{transcendental} \ \mathrm{degree} \ \mathrm{of} \ R \ \mathrm{over} \ k). \end{array}$

(3) Show that if R is a domain generated by a_1, \ldots, a_m as a ring over k then $\operatorname{tr.deg}_k(R) \leq m$.

Question 4.

Suppose R and R^\prime are two integral domains containing a field k.

- (1) Show that if $f : R \to R'$ is an isomorphism over k (i.e. f(x) = x for all $x \in k$). Then tr.deg (R) = tr.deg (R').
- (2) Show that if $f : \mathbb{R} \to \mathbb{R}'$ is a surjective homomorphism over k, then $\operatorname{tr.deg}(\mathbb{R}') \leq \operatorname{tr.deg}(\mathbb{R})$.

You may assume that both have finite tr. degree.

- (3) Show that under the assumptions of (2) above, if tr.deg $(R') = \text{tr.deg}(R) < \infty$ then f is in fact an isomorphism. Hint: Let $B' = \{a'_1, \ldots, a'_n\}$ be a basis of R', and let $B = f^{-1}(B) = \{a_1, \ldots, a_n\}$. Let $u \neq 0$ be in R, and let $p(X_1, \ldots, X_n, Y)$ be a polynomial over k such that $p(a_1, \ldots, a_n, u) = 0$ of minimal degree. So $p(X_1, \ldots, X_n, 0) \neq 0$. If f(u) = 0 then $p(a'_1, \ldots, a'_n, 0) = 0$ – a contradiction.
- (4) Bonus: show that (3) is not true if we allow $\operatorname{tr.deg}(R) = \operatorname{tr.deg}(R')$ to be infinite.