VALUED FIELDS - EXERCISE 4

To be submitted on Wednesday 24.11 .2010 by 14:00 in the mailbox.

Question 1.

Prove the following:
(1) A domain R is a valuation ring in its field of fractions K iff the set of ideals of R is linearly ordered by inclusion.
(2) A field K posses only trivial places iff K is an algebraic extension of \mathbb{F}_{p} for some prime p.

Question 2.

In the next 2 questions we shall prove the following theorem:
Theorem. (weak form of Hilbert's Nullstellensatz) Suppose I is a proper ideal in the ring $k\left[X_{1}, \ldots, X_{n}\right]$ with k an algebraically closed field.
Then $\mathrm{V}(\mathrm{I}):=\left\{\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}\right) \mid \forall \mathrm{f} \in \mathrm{I}\left(\mathrm{f}\left(\mathrm{a}_{1}, \ldots, \mathrm{a}_{n}\right)=0\right)\right\} \neq \emptyset$.
(1) Show that the theorem is equivalent to:
\star Suppose k is a field, and $B \supseteq k$ is a field which is finitely generated as a ring over k. Then B is a finite algebraic extension.
Hint: Note that if k is algebraically closed, B is an algebraic extension iff $B=k$.
(2) Show that \star follows from the following Proposition:

Proposition. Let $\mathrm{A} \subseteq \mathrm{B}$ be integral domains, B finitely generated as a ring over A, and let Ω be an algebraically closed field. Let $0 \neq v \in B$ then there exists $0 \neq u \in A$ with the following property:
Any homomorphism $\mathrm{f}: \mathcal{A} \rightarrow \Omega$ such that $\mathrm{f}(\mathrm{u}) \neq 0$ can be extended to a homomorphism $\mathrm{g}: \mathrm{B} \rightarrow \Omega$ such that $\mathrm{g}(v) \neq 0$.

Hint: let $A=k, \Omega=\bar{k}$ (the algebraic closure of k), $v=1$.
(3) Bonus: Show that the Proposition above is not true without the assumption that B is finitely generated as a ring over A.

Question 3.

Prove the proposition in Question 2 using the following steps:
(1) Show that it is enough to prove the Proposition for the case where $B=A[x]$ (i.e. B is generated by just one element over A).
(2) First case: x is transcendental over A. Then $v=v(x)=\sum_{i=0}^{n} a_{i} x^{i}$ is a polynomial over A. Choose $u=a_{n}$.
Hint: note that if f is a homomorphism as in the proposition, and $\mathrm{f}(\mathrm{u}) \neq 0$, then there exists some $\varepsilon \in \Omega$ such that $\sum_{i=0}^{n} f\left(a_{i}\right) \varepsilon^{i} \neq 0$.
(3) Second case: x is algebraic over A. So v^{-1} is also algebraic over A - explain why.

Suppose $\sum_{i=0}^{m} a_{i} v^{-i}=0$ and $\sum_{i=0}^{n} b_{i} x^{i}=0$ (and $a_{i}, b_{i} \in A$). Choose $u=a_{m} b_{n}$. Let $K=$ quot (A). Suppose $f(u) \neq 0$.
(4) Extend f to $\mathrm{A}\left[\mathrm{u}^{-1}\right]$ by taking u^{-1} to $f(u)^{-1}$ - make sure this defines a well defined homomorphism.
(5) Next extend f to a place $P: K_{P} \rightarrow \Omega$ - explain why this is possible.
(6) Show that by choice of \mathfrak{u}, both x and v^{-1} are integral over $A\left[u^{-1}\right]$.
(7) Conclude that $\mathrm{B} \subseteq \mathrm{K}_{\mathrm{P}}$ and $v^{-1} \in \mathrm{~K}_{\mathrm{P}}$ and finish the proof.

