VALUED FIELDS - EXERCISE 5

To be submitted on Wednesday 01.12 .2010 by 14:00 in the mailbox.

Definition.

(1) Recall: for a ring (not necessarily a domain) R, a multiplicative set $S \subseteq R$ is a set that contains 1 , and for all $x, y \in S, x y \in S$. For such a set we define $S^{-1} R$ as the ring whose elements are \sim equivalence classes of pairs $(x, y) \in R \times S$ where $(x, y) \sim\left(x^{\prime}, y^{\prime}\right)$ iff $\exists u \in S\left(u\left(x y^{\prime}-x^{\prime} y\right)=0\right)$. You may think of elements in $S^{-1} R$ as x / y where $x \in R, y \in S$. Addition and multiplication are defined as usual: $(x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x y^{\prime}+x^{\prime} y, y y^{\prime}\right)$, $(x, y)\left(x^{\prime}, y^{\prime}\right)=\left(x x^{\prime}, y y^{\prime}\right)$.
(2) Let $A \subseteq B$ be rings. An element $\alpha \in B$ is said to be integral over A if it satisfies a monic polynomial with coefficients from A : if there exists a relation of the form $\alpha^{m}+a_{1} \alpha^{m-1}+\cdots+a_{m}=0$ where $a_{i} \in A$.
(3) The ring $B \supseteq A$ is an integral extension of A if all its elements are integral over A.

Question 1.

Suppose R is a ring, S a multiplicative subset of R.
(1) Prove that \sim is an equivalence relation, that + , are well defined on $S^{-1} R$ are well defined, that $S^{-1} R$ is a ring, and that the map $x \mapsto x / 1$ from R to S is a ring homomorphism.
(2) Show that there is a $1-1$ correspondence between $\{Q \mid Q$ is prime in $R, Q \cap S=\emptyset\}$ and prime ideals in $S^{-1} R: \mathfrak{p}$ is matched with $S^{-1} \mathfrak{p}:=\{(x, y) \mid x \in \mathfrak{p}, \mathfrak{y} \in S\}$.

Question 2.

Suppose R is a Dedekind Domain (recall the definition from Exercise 1). Suppose P is a prime ideal in $R(0 \neq P \neq R)$.
(1) Show that $\bigcap_{i=1}^{\infty} P^{i}=0$. Hint: use the results from Exercise 1.
(2) Let R_{P} be the localization in P. Deduce that there is $m \in R_{P}$ such that every element in R_{P} can be written as $u m^{q}$ where u is a unit, $q \in \mathbb{N}$. Hint: Show that $\left(P R_{P}\right)^{2} \subsetneq P R_{P}$.

Question 3.

Suppose $A \subseteq B$ are integral domains, and that B is an integral extension of A.
(1) Suppose S is a multiplicative subset of A. Show that $S^{-1} B$ is an integral extension of $S^{-1} A$.
(2) Suppose \mathfrak{q} is a prime ideal of B and \mathfrak{p} is a prime ideal of A such that $\mathfrak{p}=\mathfrak{q} \cap A$. Show that B / \mathfrak{q} is an integral extension of A / \mathfrak{p}.
(3) Prove that A is a field iff B is a field.

Hint: Suppose B is a field and A is not. Use Corollary V to Theorem 5 (Chevalley). Another option is: suppose $0 \neq x \in A$, then $x^{-1} \in B$, so there is a monic polynomial $f(X)$ such that $f\left(x^{-1}\right)=0$. Manipulate this
equation to show that $x^{-1} \in A$. The second direction follows directly from the definitions.
(4) Now suppose as above that \mathfrak{q} is a prime ideal of B and \mathfrak{p} is a prime ideal of A such that $\mathfrak{p}=\mathfrak{q} \cap A$. Conclude that \mathfrak{p} is maximal iff \mathfrak{q} is.
(5) Conclude that if $\mathfrak{q}_{1}, \mathfrak{q}_{2}$ are 2 prime ideals of B such that $\mathfrak{q}_{1} \cap A=\mathfrak{q}_{2} \cap A=\mathfrak{p}$ and $\mathfrak{q}_{1} \subseteq \mathfrak{q}_{2}$ then $\mathfrak{q}_{1}=\mathfrak{q}_{2}$.
Hint: Suppose not. Let $S=A \backslash \mathfrak{p}$. Then $S^{-1} A=A_{p}$, and $S^{-1} B$ is integral over $A_{\mathfrak{p}}$. Also $S^{-1} \mathfrak{q}_{1} \subseteq S^{-1} \mathfrak{q}_{2}$ are different prime ideals of $S^{-1} B$ (why?), such that the intersection with $A_{\mathfrak{p}}$ is $\mathfrak{p} A_{\mathfrak{p}}$. Use (4).

Question 4.

Prove the following:
Let $A \subseteq B$ be integral domains. Assume:

- B is integral over A.
- P is a prime ideal of B.
- \mathfrak{p} is a prime ideal of A.
- $\mathfrak{p}=P \cap A$.
- $\mathfrak{q} \supseteq \mathfrak{p}$ is another prime ideal in A.

Then there exists a prime ideal Q of B such that $Q \supseteq P$ and $Q \cap A=\mathfrak{q}$.
Hint: see Corollary V to Theorem 5 (Chevalley), use Question 3.

