VALUED FIELDS - EXERCISE 5

To be submitted on Wednesday 01.12.2010 by 14:00 in the mailbox.

Definition.

- (1) Recall: for a ring (not necessarily a domain) R, a multiplicative set $S \subseteq R$ is a set that contains 1, and for all $x, y \in S$, $xy \in S$. For such a set we define $S^{-1}R$ as the ring whose elements are ~ equivalence classes of pairs $(x, y) \in R \times S$ where $(x, y) \sim (x', y')$ iff $\exists u \in S (u (xy' x'y) = 0)$. You may think of elements in $S^{-1}R$ as x/y where $x \in R$, $y \in S$. Addition and multiplication are defined as usual: (x, y) + (x', y') = (xy' + x'y, yy'), (x, y) (x', y') = (xx', yy').
- (2) Let $A \subseteq B$ be rings. An element $\alpha \in B$ is said to be integral over A if it satisfies a monic polynomial with coefficients from A: if there exists a relation of the form $\alpha^m + a_1 \alpha^{m-1} + \cdots + a_m = 0$ where $a_i \in A$.
- (3) The ring $B \supseteq A$ is an integral extension of A if all its elements are integral over A.

Question 1.

Suppose R is a ring, S a multiplicative subset of R.

- (1) Prove that ~ is an equivalence relation, that $+, \cdot$ are well defined on $S^{-1}R$ are well defined, that $S^{-1}R$ is a ring, and that the map $x \mapsto x/1$ from R to S is a ring homomorphism.
- (2) Show that there is a 1-1 correspondence between $\{Q | Q \text{ is prime in } R, Q \cap S = \emptyset\}$ and prime ideals in $S^{-1}R$: \mathfrak{p} is matched with $S^{-1}\mathfrak{p} := \{(x, y) | x \in \mathfrak{p}, y \in S\}$.

Question 2.

Suppose R is a Dedekind Domain (recall the definition from Exercise 1). Suppose P is a prime ideal in R $(0 \neq P \neq R)$.

- (1) Show that $\bigcap_{i=1}^{\infty} P^i = 0$.
 - Hint: use the results from Exercise 1.
- (2) Let R_P be the localization in P. Deduce that there is $m \in R_P$ such that every element in R_P can be written as um^q where u is a unit, $q \in \mathbb{N}$. Hint: Show that $(PR_P)^2 \subsetneq PR_P$.

Question 3.

Suppose $A \subseteq B$ are integral domains, and that B is an integral extension of A.

- (1) Suppose S is a multiplicative subset of A. Show that $S^{-1}B$ is an integral extension of $S^{-1}A$.
- (2) Suppose \mathfrak{q} is a prime ideal of B and \mathfrak{p} is a prime ideal of A such that $\mathfrak{p} = \mathfrak{q} \cap A$. Show that B/\mathfrak{q} is an integral extension of A/\mathfrak{p} .
- (3) Prove that A is a field iff B is a field. Hint: Suppose B is a field and A is not. Use Corollary V to Theorem 5 (Chevalley). Another option is: suppose $0 \neq x \in A$, then $x^{-1} \in B$, so there is a monic polynomial f(X) such that $f(x^{-1}) = 0$. Manipulate this

equation to show that $x^{-1} \in A$. The second direction follows directly from the definitions.

- (4) Now suppose as above that \mathfrak{q} is a prime ideal of B and \mathfrak{p} is a prime ideal of A such that $\mathfrak{p} = \mathfrak{q} \cap A$. Conclude that \mathfrak{p} is maximal iff \mathfrak{q} is.
- (5) Conclude that if q_1, q_2 are 2 prime ideals of B such that $q_1 \cap A = q_2 \cap A = \mathfrak{p}$ and $q_1 \subseteq q_2$ then $q_1 = q_2$. Hint: Suppose not. Let $S = A \setminus \mathfrak{p}$. Then $S^{-1}A = A_\mathfrak{p}$, and $S^{-1}B$ is integral over $A_\mathfrak{p}$. Also $S^{-1}q_1 \subseteq S^{-1}q_2$ are different prime ideals of $S^{-1}B$ (why?), such that the intersection with $A_\mathfrak{p}$ is $\mathfrak{p}A_\mathfrak{p}$. Use (4).

Question 4.

Prove the following:

- Let $A \subseteq B$ be integral domains. Assume:
 - B is integral over A.
 - $\bullet~P~{\rm is}~a~{\rm prime}~{\rm ideal}~{\rm of}~B.$
 - \mathfrak{p} is a prime ideal of A.
 - $\mathfrak{p} = P \cap A$.
 - $\mathfrak{q} \supseteq \mathfrak{p}$ is another prime ideal in A.

Then there exists a prime ideal Q of B such that $Q \supseteq P$ and $Q \cap A = \mathfrak{q}$. Hint: see Corollary V to Theorem 5 (Chevalley), use Question 3.