Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

VALUED FIELDS – EXERCISE 6

To be submitted on Wednesday 08.12.2010 by 14:00 in the mailbox.

Definition.

- (1) A valuation ν on a field K is a group homomorphism from K^{\times} into an ordered abelian group $(\Gamma, <)$ such that $\nu(x + y) \ge \min(\nu(x), \nu(y))$.
- (2) Given a valuation ν on K, $K_{\nu} := \{x | \nu(x) \ge 0\}$ is the valuation ring, $\mathfrak{m}_{\nu} = \{x | \nu(x) > 0\}$ is the maximal ideal, and $k_{\nu} = K_{\nu}/\mathfrak{m}_{\nu}$ is the residue field.

Question 1.

Suppose $K \subseteq L$ is an algebraic extension, P is a place on K and λ is a place on L such that λ extends P (i.e. $K_P = L_{\lambda} \cap K$).

- (1) Show that $\mathfrak{m}_P = K \cap \mathfrak{m}_{\lambda}$ (where $\mathfrak{m}_P, \mathfrak{m}_{\lambda}$ are the maximal ideals of K_P, L_{λ} resp.).
- (2) Let C be the integral closure of K_P in L, and let $l = C \cap \mathfrak{m}_{\lambda}$. Show that l is a maximal ideal in C (Hint: Question 4, (4)).
- (3) Show that $C_1 \subseteq L_{\lambda}$ (C_1 is the localization of C in 1). In the rest of the question, you will show that $C_1 = L_{\lambda}$.
- (4) Given $t \in L$, show that there is some polynomial $p(X) \in K_P[X]$ such that p(t) = 0 and moreover, if $p(X) = \sum_{i \leq n} a_i X^i$ then there is some j < n such that $a_j = 1$, and $P(a_i) = 0$ for all i < j.
- (5) Suppose that $t \in M_{\lambda}$, and p(t) = 0 is as in (5). Let $a = a_n t^{n-j} + \ldots + a_j, b = a_{j-1} + a_{j-2}/t + \ldots + a_0/t^{j-1}$ (you may assume $a_{-1} = 0$) so that at + b = 0. Show that $a, b \in C$.

Hint: use the theorem saying that the integral closure of a ring R in a field F is the intersection of all valuation rings containing R.

(6) Prove that $a \notin l$, and finish.

Question 2.

Suppose $K \subseteq L$ is an algebraic extension

- (1) Deduce from Question 1 that if ν is a valuation on L such that $\nu|_{K}$ is trivial, then ν is trivial.
- (2) Prove (1) directly from the definitions of a valuation.

Question 3.

Translate the following statements from places to valuations, and explain how they follow from what you have seen in the course:

- (1) Let $K_2 \supseteq K_1$ be a field extension and let ν be a valuation on K_1 . Then there is a valuation ν_2 on K_2 such that ν_2 extends ν_1 (i.e. $\Gamma_{\nu_2} \supseteq \Gamma_{\nu_1}$ and $\nu_2|_{K_1} = \nu_1$).
- (2) Under the assumption of the clause (1), prove that there is a valuation ν_2 such that k_{ν_2} is an algebraic extension of k_{ν_1} .

Question 4.

Let R be a Dedekind domain. Let K be its quotient field.

- (1) Show that all local subrings of K containing R are valuation rings.
- (2) Suppose A is a local subring of K, but now it does not necessarily contains R, is (1) still true?

Hint: consider $\mathbb{F}_{p}(X)$.

(3) Now let k be a field, R = k[X] and K = k(X). Consider the valuation $\nu: K^{\times} \to \mathbb{Z}$ defined as $\nu(f/g) = \deg(f) - \deg(g)$. Show that ν is a valuation, and compute the valuation ring, and show that it does not contain R.

Question 4.

Let K be a field, and v a valuation on it. Consider the Gauss extension of v to L := K(X) defined by $\nu(\sum a_i x^i) = \min\{\nu(a_i)\}$, and $\nu(f/g) = \nu(f) - \nu(g)$ for $f, g \in K[X]$. In class it was shown to be a valuation.

Let l_{ν} be the residue field of L, and k_{ν} the residue field of K, and let $\pi_{K} : K_{\nu} \to k_{\nu}$ be the residue map of K to the residue field (this is the corresponding place), and let $\pi_{L} : L_{\nu} \to l_{\nu}$ be the residue map of L.

Prove that $\pi_{L}(X)$ is transcendental over k_{ν} and that l_{ν} is $k_{\nu}(\pi_{L}(X))$.