Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

VALUED FIELDS – EXERCISE 7

To be submitted on Wednesday 15.12.2010 by 14:00 in the mailbox.

Question 1.

In Question 4, Exercise 2, we constructed $\mathbb{Q}((t))$ – the field of formal Laurant series over \mathbb{Q} . We showed that there is a place with $K_P = \{f \in F((t)) | \text{supp}(f) \subseteq \mathbb{N} = \{0, 1, \ldots\}\}$. Compute the corresponding valuation (i.e. the value map, the valuation group and the residue field).

Question 2.

Let $L = \mathbb{Q}[[t]]^{\times}$ be the group of units in the valuation ring of $\mathbb{Q}((t))$. In Exercise 3 we defined the notion of transcendental degree over \mathbb{Q} (just for a ring, but really for any set). Prove that $\operatorname{tr.deg}_{\mathbb{Q}}(L) = 2^{\aleph_0} > \aleph_0$. Hints:

- (1) Recall that for any field k, and $K \supseteq k$, for a set $X \subseteq K$, $cl_k(X) = \{y \in K | y \text{ is algebraic over } k(X)\}$. Show that $|cl_k(X)| \leq |k| + \aleph_0 + |X|$ (use the fact that for 2 infinite sets A, and B, $\sum_{n \in \mathbb{N}} |A|^n = |A| + \aleph_0$ and $|A| + |B| = |A| \cdot |B| = \max(|A|, |B|)$).
- (2) Conclude that if $\operatorname{tr.deg}_{\mathbb{Q}}(L) < 2^{\aleph_0}$, then $|L| < 2^{\aleph_0}$.
- (3) Look at the definition of L and derive a contradiction.

Question 3.

- (1) Let R be a Dedekind Domain, and let K = quot(R) be its field of fractions. Let ν be a valuation on K such that its valuation ring K_{ν} contains R. Show that ν is a p-adic valuation for some prime ideal p of R. Let K be a field.
- (2) Classify all valuations on K(X) that are trivial on K. Hint: Let w be a valuation on K(X). Either the valuation ring $K_w \supseteq K[X]$, or w(x) < 0, in which case $K_w \supseteq K[1/x]$. Use (1).

In class you showed the following theorem:

- Let $\nu : k \to \Gamma \cup \{\infty\}$ be a valuation on k. Then there is a unique extension w of ν to K(X) s.t. w(X) = 0 and \overline{X} is transcendental over \overline{K} .
- (3) Without the condition that X is transcendental over K, there is more than one such valuation w. In fact, there can be infinitely many extensions. Hint: Use (2) to find infinitely many such valuations.

Question 4.

Let V be the valuation of the field of Laurant series $\mathbb{Q}((t))$. Show that the number of non-equivalent valuations w on $\mathbb{Q}(t)(X)$ extending $V|_{\mathbb{Q}(t)}$ with w(X) = 0 is 2^{\aleph_0} (Hint: use Question 2 to find a set $B \subseteq L$ of size 2^{\aleph_0} such that every $a \in B$ is not algebraic over $\mathbb{Q}(t)$. For every $a \in B$, $\mathbb{Q}(t)(a)$ is isomorphic to $\mathbb{Q}(t)(X)$, and it induces a valuation on $\mathbb{Q}(t)(X)$, call it v_a . Show that all these valuations are non equivalent: for every $a\neq b\in B$, find a polynomial $p_{a,b}\left(t\right)$ over \mathbb{Q} and a number $m\in\mathbb{N}$ such that $\nu_{a}\left(\left(X-p_{a,b}\left(t\right)\right)/t^{m}\right)>0$ while $\nu_{b}\left(\left(X-p_{a,b}\left(t\right)\right)/t^{m}\right)=0$ or vice-versa.