VALUED FIELDS - EXERCISE 8

To be submitted on Wednesday 08.12 .2010 by $14: 00$ in the mailbox.

Definition.

(1) An abelian group ($\mathrm{G},<,+$) is called an ordered abelian group if $<$ is a linear order which satisfies $(x<y) \Rightarrow(x+z<y+z)$ for every $x, y, z \in G$.
(2) A field $(R,<,+, \cdot)$ is called an ordered field if $(R,+,<)$ if $(R,<,+)$ is an ordered abelian group and $0 \leqslant x, y \Rightarrow 0 \leqslant x y$.
(3) A field is called real if there exists a linear order $<\operatorname{such}$ that $(R,<)$ is an ordered field. < is called an ordering of R.
(4) An ordered field is called Archimedean if for every $x \in R$ there exists some $n \in \mathbb{N}$ such that $x \leqslant n$.

Question 1.

In class you showed the following theorem:

- Let $v: k \rightarrow \Gamma \cup\{\infty\}$ be a valuation on $k, \Gamma^{\prime} \supseteq \Gamma, \gamma \in \Gamma^{\prime}$ such that $\forall \mathrm{n} \in \mathbb{Z}(\mathrm{n} \gamma \in \Gamma \Rightarrow \mathrm{n}=0)$, then there is a unique extension w of v to $\mathrm{K}(\mathrm{X})$ s.t. $w(X)=\gamma$.
(1) Show that without the condition that $\forall \mathrm{n} \in \mathbb{Z}(\mathrm{n} \gamma \in \Gamma \Rightarrow \mathrm{n}=0)$, there can be more than one such extension w.
(2) Show that even if we add the condition that $\gamma \in \Gamma^{\prime} \backslash \Gamma$, there can be more than one such extension w.
Hint: we consider $\mathbb{Q}((t))$ with valuation V. There are elements $a, b \in$ $\mathbb{Q}((t))$ such that b is not algebraic over $\mathbb{Q}(a), V(a)=2, V(b)=1$ (for instance, we may choose $a=t^{2}$). Let $\Gamma=2 \mathbb{Z}$, and $\Gamma^{\prime}=\mathbb{Z}, \gamma=1$. Show that we can extend $v:=\mathrm{V}_{\mathbb{Q}(\mathrm{a})}$ in two ways to w_{1}, w_{2} so that there is some element of the form $m=\left(b^{2}+c a\right) / a$ (where $\left.c \in \mathbb{Q}\right)$ such that $w_{1}(m)=0$ and $w_{2}(m)>0$.
(3) Bonus: Show that in fact there are $2^{\aleph_{0}}$ non-equivalent extensions of $v:=$ $\left.\mathrm{V}\right|_{\mathbb{Q}\left(\mathrm{t}^{2}\right)}$ to $\mathbb{Q}\left(\mathrm{t}^{2}\right)(\mathrm{X})$ such that $v(\mathrm{X})=1$.
Hint: let B be a subset of $\mathbb{Q}[[t]]$ of size $2^{\Sigma_{0}}$ such that $v(a)=1$ for every $a \in B$, and even $a=t+\sum_{i=2}^{\infty} a_{i} t^{i}$, and B is an algebraically independent set over t^{2}. So each $a \in B$ induces a valuation on $\mathbb{Q}\left(t^{2}\right)(X)$. Show that these are all non-equivalent.

Question 2.

Let K be a field, and let $L_{1}=K(X), L_{2}=K(X, Y)$ be the fields of rational functions over K with one and two variables respectively.
(1) Define $\varphi: L_{1} \rightarrow K \cup\{\infty\}$ by $\varphi(f(X) / g(X))=f(0) / g(0)$ for $f, g \in K[X]$ co-prime (where $a / 0=\infty$. Note that $0 / 0$ does not occur). Prove that it is a place, and compute its corresponding valuation (i.e. compute the valuation ring, the valuation group, the residue field, and the valuation map).
(2) Define $\psi: L_{2} \rightarrow L_{1} \cup\{\infty\}$ by $\psi(f(Y) / g(Y))=f(0) / g(0)$ for $f, g \in L_{1}[Y]$ coprime as before. Show that it is also a place and compute the corresponding valuation.
(3) Define $\chi=\varphi \circ \psi: \mathrm{L}_{2} \rightarrow \mathrm{~K} \cup\{\infty\}$. Show that it is also a place, and compute its corresponding valuation.
Hint: Prove that in fact, the valuation group is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ with the lexicographic order $((a, b)<(c, d)$ iff $a<c$ or $a=c$ and $b<d$), and that the valuation map takes $X^{n} Y^{m}$ to (m, n).

Question 3.

(1) Let R be a field, and $<$ be a linear order on R such that $(R,<,+)$ is an ordered abelian group. Let $\mathrm{P}^{\times}=\{x \in R \mid 0<x\}$.
Show that $(R,<)$ is an ordered field iff ($\mathrm{P}^{\times}, \cdot,<$) is an ordered abelian group.
(2) Let R be an ordered field, and let $K=R((t))$. How many orderings are there on K that extend the order on R and such that the valuation ring $R[[t]]$ is convex?
(3) Compute all of these orderings explicitly, i.e. given $f(t)=\sum_{i=-n}^{\infty} a_{i} t^{i}$, write down sufficient and necessary conditions on f for f to be positive.
(4) Prove that none of these orderings is Archimedean.

Question 4.

Suppose $(R,<)$ is an ordered field which satisfies the property that $P=\{x \in R \mid 0 \leqslant x\}$ is contained in the set of squares
(1) Show that if $<^{\prime}$ is a linear order on R so that $\left(R,<^{\prime}\right)$ is an ordered field then $<=<^{\prime}$.
(2) Suppose in addition that R is Archimedean (for instance, R can be \mathbb{R}). Suppose K is a field extension of R, and that v is a valuation on K such that the residue field $\overline{\mathrm{K}}$ is real. Show that v is trivial on R (i.e. that the valuation ring O_{v} contains R).
Hint: Use the Corollary after Baer-Krull Theorem.

