Prof. Dr. Salma Kuhlmann

VALUED FIELDS – EXERCISE 8

To be submitted on Wednesday 08.12.2010 by 14:00 in the mailbox.

Definition.

- (1) An abelian group (G, <, +) is called an *ordered abelian group* if < is a linear order which satisfies $(x < y) \Rightarrow (x + z < y + z)$ for every $x, y, z \in G$.
- (2) A field $(\mathbf{R}, <, +, \cdot)$ is called an *ordered field* if $(\mathbf{R}, +, <)$ if $(\mathbf{R}, <, +)$ is an ordered abelian group and $0 \leq \mathbf{x}, \mathbf{y} \Rightarrow 0 \leq \mathbf{xy}$.
- (3) A field is called *real* if there exists a linear order < such that (R, <) is an ordered field. < is called an ordering of R.
- (4) An ordered field is called Archimedean if for every $x \in R$ there exists some $n \in \mathbb{N}$ such that $x \leq n$.

Question 1.

In class you showed the following theorem:

- Let $\nu : k \to \Gamma \cup \{\infty\}$ be a valuation on k, $\Gamma' \supseteq \Gamma$, $\gamma \in \Gamma'$ such that $\forall n \in \mathbb{Z} (n\gamma \in \Gamma \Rightarrow n = 0)$, then there is a unique extension w of ν to K(X) s.t. $w(X) = \gamma$.
- (1) Show that without the condition that $\forall n \in \mathbb{Z} (n\gamma \in \Gamma \Rightarrow n = 0)$, there can be more than one such extension w.
- (2) Show that even if we add the condition that $\gamma \in \Gamma' \setminus \Gamma$, there can be more than one such extension w.

Hint: we consider $\mathbb{Q}((t))$ with valuation V. There are elements $a, b \in \mathbb{Q}((t))$ such that b is not algebraic over $\mathbb{Q}(a)$, V(a) = 2, V(b) = 1 (for instance, we may choose $a = t^2$). Let $\Gamma = 2\mathbb{Z}$, and $\Gamma' = \mathbb{Z}$, $\gamma = 1$. Show that we can extend $v := V|_{\mathbb{Q}(a)}$ in two ways to w_1, w_2 so that there is some element of the form $\mathfrak{m} = (b^2 + ca) / a$ (where $c \in \mathbb{Q}$) such that $w_1(\mathfrak{m}) = 0$ and $w_2(\mathfrak{m}) > 0$.

(3) Bonus: Show that in fact there are 2^{\aleph_0} non-equivalent extensions of $\nu := V|_{\mathbb{Q}(t^2)}$ to $\mathbb{Q}(t^2)(X)$ such that $\nu(X) = 1$. Hint: let B be a subset of $\mathbb{Q}[[t]]$ of size 2^{\aleph_0} such that $\nu(\mathfrak{a}) = 1$ for every

Hint: let B be a subset of $\mathbb{Q}[[t]]$ of size 2^{\aleph_0} such that $\nu(a) = 1$ for every $a \in B$, and even $a = t + \sum_{i=2}^{\infty} a_i t^i$, and B is an algebraically independent set over t^2 . So each $a \in B$ induces a valuation on $\mathbb{Q}(t^2)(X)$. Show that these are all non-equivalent.

Question 2.

Let K be a field, and let $L_1 = K(X)$, $L_2 = K(X, Y)$ be the fields of rational functions over K with one and two variables respectively.

- (1) Define $\varphi : L_1 \to K \cup \{\infty\}$ by $\varphi(f(X)/g(X)) = f(0)/g(0)$ for $f, g \in K[X]$ co-prime (where $a/0 = \infty$. Note that 0/0 does not occur). Prove that it is a place, and compute its corresponding valuation (i.e. compute the valuation ring, the valuation group, the residue field, and the valuation map).
- (2) Define $\psi : L_2 \to L_1 \cup \{\infty\}$ by $\psi(f(Y)/g(Y)) = f(0)/g(0)$ for $f, g \in L_1[Y]$ coprime as before. Show that it is also a place and compute the corresponding valuation.

(3) Define $\chi = \phi \circ \psi : L_2 \to K \cup \{\infty\}$. Show that it is also a place, and compute its corresponding valuation. Hint: Prove that in fact, the valuation group is isomorphic to $\mathbb{Z} \times \mathbb{Z}$ with the lexicographic order ((a, b) < (c, d) iff a < c or a = c and b < d), and that the valuation map takes $X^n Y^m$ to (m, n).

Question 3.

- (1) Let R be a field, and < be a linear order on R such that (R,<,+) is an ordered abelian group. Let $P^{\times}=\{x\in R\,|0< x\}.$
- Show that (R, <) is an ordered field iff $(P^{\times}, \cdot, <)$ is an ordered abelian group. (2) Let R be an ordered field, and let K = R((t)). How many orderings are there on K that extend the order on R and such that the valuation ring R[[t]] is convex?
- (3) Compute all of these orderings explicitly, i.e. given $f(t) = \sum_{i=-n}^{\infty} a_i t^i$, write down sufficient and necessary conditions on f for f to be positive.
- (4) Prove that none of these orderings is Archimedean.

Question 4.

Suppose (R, <) is an ordered field which satisfies the property that $P = \{x \in R | 0 \le x\}$ is contained in the set of squares

- (1) Show that if <' is a linear order on R so that (R, <') is an ordered field then <=<'.
- (2) Suppose in addition that R is Archimedean (for instance, R can be \mathbb{R}). Suppose K is a field extension of R, and that ν is a valuation on K such that the residue field \overline{K} is real. Show that ν is trivial on R (i.e. that the valuation ring O_{ν} contains R).

Hint: Use the Corollary after Baer-Krull Theorem.