Prof. Dr. Salma Kuhlmann

Dr. Itay Kaplan

VALUED FIELDS – EXERCISE 9

To be submitted on Wednesday 12.1.2011 by 14:00 in the mailbox.

Definition.

- (1) We say that two linear orderings $(I_1, <_1)$ and $(I_2, <_2)$ have the same order type if there is an isomorphism between them (i.e. an order preserving map which is injective and surjective).
- (2) For a linear order I, the order type of I is the equivalence class of all linear ordering that have the same order type as I.
- (3) An *order type* is an order type of some linear order. The class of all order types is denoted by OT.
- (4) The rank of an ordered abelian group Γ is the order type of the set of convex subgroups of Γ. Denote this by rank (Γ).

Question 1.

Suppose $(I_1, <)$ and $(I_2, <)$ are linear orderings. Define the linear order $(I_1, <_1) + (I_2, <_2)$ on the set $I_1 \times \{0\} \cup I_2 \times \{1\}$ as follows:

For $a, b \in I_1$, (a, 0) < (b, 0) iff $a <_1 b$. For $a, b \in I_2$, (a, 1) < (b, 1) iff $a <_2 b$. For $a \in I_1, b \in I_2$, (a, 0) < (b, 1).

- (1) Show that this is indeed a linear order.
- (2) Show that if $(J_1, <'_1)$ has the same order type as $(I_1, <_1)$ and $(J_2, <_2)$ has the same order type as $(I_2, <_2)$ then $(J_1, <'_1) + (J_2, <'_2)$ has the same order type as $(I_1, <_1) + (I_2, <_2)$.
- (3) Define addition on order types (i.e. given two order types, $\mathfrak{I}_1, \mathfrak{I}_2 \in \mathsf{OT}$, define $\mathfrak{J}_1 + \mathfrak{J}_2$).
- (4) Is addition commutative?
- (5) Define multiplication of order types.

Question 2.

Let Γ be an ordered abelian group, and let Δ be a convex subgroup.

- (1) Show that there is a unique linear ordering on Γ/Δ such that the canonical map $\Gamma \to \Gamma/\Delta$ is an order preserving homomorphism.
- (2) Show that there is a 1-1 correspondence between $\{\Delta_1 \supseteq \Delta | \Delta_1 \text{ is a convex subgroup of } \Gamma\}$ and the set of convex subgroups of Γ/Δ .
 - Hint: consider the map taking Δ_1 to Δ_1/Δ .
- (3) Show that rank $(\Gamma) = \operatorname{rank}(\Delta) + \operatorname{rank}(\Gamma/\Delta)$ (see Question 1).

Question 3.

Suppose K is a field. Show that K is real iff -1 is not a finite sum of squares from K (i.e. there are no $a_1, \ldots, a_n \in K$ such that $-1 = \sum a_i^2$). Use the following steps:

- (1) Prove right to left.
- (2) Define \mathcal{P} to be the set of all pre-positive cones, i.e. the set of all $P \subseteq K$ such that $-1 \notin P$, $P + P \subseteq P$, $P \cdot P \subseteq P$. Show that \mathcal{P} is not empty.
- (3) Show that \mathcal{P} satisfies all the conditions of Zorn's lemma and deduce that there is a maximal element \mathcal{P} .

(4) Show that P is a positive cone, i.e. that $P\cup -P=K$ (assume not: let $a \in K \setminus (P \cup -P)$, and show that one can add a or -a to P).

Question 4.

Let (K, v) be a valued field with residue field \overline{K} . Prove that the following are equivalent:

- (1) K is real (i.e. there exists an ordering on K) and the valuation ring K_{ν} is convex (with respect to this ordering).
- (2) \overline{K} is real.

(3) For all $a_1, \ldots, a_n \in K$, $\nu \left(a_1^2 + \ldots + a_n^2\right) = \min \left\{\nu \left(a_i^2\right) | 1 \leq i \leq n\right\}$. Hint: For (2) equivalent with (3) use Question 3.