## VALUED FIELDS - EXERCISE 9

To be submitted on Wednesday 12.1 .2011 by $14: 00$ in the mailbox.

## Definition.

(1) We say that two linear orderings $\left(\mathrm{I}_{1},<_{1}\right)$ and $\left(\mathrm{I}_{2},<_{2}\right)$ have the same order type if there is an isomorphism between them (i.e. an order preserving map which is injective and surjective).
(2) For a linear order I, the order type of I is the equivalence class of of all linear ordering that have the same order type as I.
(3) An order type is an order type of some linear order. The class of all order types is denoted by OT.
(4) The rank of an ordered abelian group $\Gamma$ is the order type of the set of convex subgroups of $\Gamma$. Denote this by rank $(\Gamma)$.

## Question 1.

Suppose ( $\mathrm{I}_{1},<$ ) and ( $\mathrm{I}_{2},<$ ) are linear orderings. Define the linear order $\left(\mathrm{I}_{1},<_{1}\right)+$ $\left(\mathrm{I}_{2},<_{2}\right)$ on the set $\mathrm{I}_{1} \times\{0\} \cup \mathrm{I}_{2} \times\{1\}$ as follows:

For $a, b \in I_{1},(a, 0)<(b, 0)$ iff $a<1 b$. For $a, b \in I_{2},(a, 1)<(b, 1)$ iff $a<2 b$. For $a \in I_{1}, b \in I_{2},(a, 0)<(b, 1)$.
(1) Show that this is indeed a linear order.
(2) Show that if $\left(\mathrm{J}_{1},<_{1}^{\prime}\right)$ has the same order type as $\left(\mathrm{I}_{1},<_{1}\right)$ and $\left(\mathrm{J}_{2},<_{2}\right)$ has the same order type as $\left(\mathrm{I}_{2},<_{2}\right)$ then $\left(\mathrm{J}_{1},<_{1}^{\prime}\right)+\left(\mathrm{J}_{2},<_{2}^{\prime}\right)$ has the same order type as $\left(\mathrm{I}_{1},<_{1}\right)+\left(\mathrm{I}_{2},<_{2}\right)$.
(3) Define addition on order types (i.e. given two order types, $\mathfrak{I}_{1}, \mathfrak{I}_{2} \in \mathrm{OT}$, define $\mathfrak{J}_{1}+\mathfrak{J}_{2}$ ).
(4) Is addition commutative?
(5) Define multiplication of order types.

## Question 2.

Let $\Gamma$ be an ordered abelian group, and let $\Delta$ be a convex subgroup.
(1) Show that there is a unique linear ordering on $\Gamma / \Delta$ such that the canonical map $\Gamma \rightarrow \Gamma / \Delta$ is an order preserving homomorphism.
(2) Show that there is a 1-1 correspondence between $\left\{\Delta_{1} \supseteq \Delta \mid \Delta_{1}\right.$ is a convex subgroup of $\left.\Gamma\right\}$ and the set of convex subgroups of $\Gamma / \Delta$.
Hint: consider the map taking $\Delta_{1}$ to $\Delta_{1} / \Delta$.
(3) Show that $\operatorname{rank}(\Gamma)=\operatorname{rank}(\Delta)+\operatorname{rank}(\Gamma / \Delta)($ see Question 1$)$.

## Question 3.

Suppose $K$ is a field. Show that $K$ is real iff -1 is not a finite sum of squares from $K$ (i.e. there are no $a_{1}, \ldots, a_{n} \in K$ such that $-1=\sum a_{i}^{2}$ ). Use the following steps:
(1) Prove right to left.
(2) Define $\mathcal{P}$ to be the set of all pre-positive cones, i.e. the set of all $P \subseteq K$ such that $-1 \notin \mathrm{P}, \mathrm{P}+\mathrm{P} \subseteq \mathrm{P}, \mathrm{P} \cdot \mathrm{P} \subseteq \mathrm{P}$. Show that $\mathcal{P}$ is not empty.
(3) Show that $\mathcal{P}$ satisfies all the conditions of Zorn's lemma and deduce that there is a maximal element $P$.
(4) Show that $P$ is a positive cone, i.e. that $P \cup-P=K$ (assume not: let $a \in K \backslash(P \cup-P)$, and show that one can add $a$ or $-a$ to $P)$.

## Question 4.

Let ( $\mathrm{K}, v$ ) be a valued field with residue field $\overline{\mathrm{K}}$. Prove that the following are equivalent:
(1) K is real (i.e. there exists an ordering on K ) and the valuation ring $\mathrm{K}_{v}$ is convex (with respect to this ordering).
(2) $\overline{\mathrm{K}}$ is real.
(3) For all $a_{1}, \ldots, a_{n} \in K, v\left(a_{1}^{2}+\ldots+a_{n}^{2}\right)=\min \left\{v\left(a_{i}^{2}\right) \mid 1 \leqslant i \leqslant n\right\}$.

Hint: For (2) equivalent with (3) use Question 3.

