1. Script zur Vorlesung: Algebra (B III)

Prof. Dr. Salma Kuhlmann, Dr. Lorna Gregory, Katharina Dupont WS 2012/2013: 22. Oktober 2012

Kapitel 1

Faktorringe, Homomorphismen, Ideale, Ringe von Brücken, Quotientenkörper, Lokalisierung, Chinesischer Reste-Satz, Euklidische und Hauptideal Ringe, Faktorielle Ringe, Polynom-Ringe, Irreduzibilitätskriterien

Alle Ringe in dieser Vorlesung sind kommutativ mit $1 \neq 0$.

Erinnerungen

Sei R ein Ring.

- (1) $a \neq 0$; $a \in R$ ist ein Nullteiler, wenn es $b \neq 0$; $b \in R$ gibt mit ab = 0.
- (2) R ist ein Integerring oder Integritätsbereich, wenn er keine Nullteiler hat.
- (3) Ein endlicher Integritätsbereich ist ein Körper (siehe Übungsblatt 1, Aufgabe 1.4 (b)).
- (4) $u \in R$ ist eine Einheit, wenn es ein $v \in R$ gibt mit uv = 1.

Notation: $R^{\times} := \text{Menge der Einheiten von } R.$

Proposition

 R^{\times} ist eine multiplikative Gruppe.

Beispiele

 $\mathbb{Z}_n^\times = U(n)$ (Übungsblatt 3, Aufgabe 2b aus Lineare Algebra 1)

$$a \in U(n) \Leftrightarrow ggT(a, n) = 1.$$

Euler φ -Funktion: $\varphi : \mathbb{N} \to \mathbb{N}$

$$\varphi(n) := |U(n)|.$$

Siehe Ubungsblatt für eine ausführliche Ausarbeitung der Eigenschaften von φ :

- (1) $\varphi(p^v) = p^v p^{v-1}$ für p Primzahl und $v \in \mathbb{N}$
- (2) φ ist eine multiplikative arithmetische Funktion i.e. $\varphi(ab) = \varphi(a)\varphi(b)$, wenn ggT (a,b) = 1.

2

Definition

- (1) $S \subseteq R$ ist ein Teilring, wenn $S \neq \emptyset$; $a, b \in S \Rightarrow a b \in S$ und $ab \in S$.
- (2) Seien R, S Ringe. $\varphi : R \to S$ ist ein Ringhomomorphismus, wenn $\varphi(1_R) = 1_S, \varphi(a+b) = \varphi(a) + \varphi(b), \varphi(ab) = \varphi(a)\varphi(b).$

Notation:

$$\ker \varphi := \{x \in R; \varphi(x) = 0\}$$

im $\varphi := \{y \in S; \exists x \in R \text{ mit } \varphi(x) = y\} := \varphi(R).$

(3) Ein *Ringisomorphismus* ist ein bijektiver Ringhomomorphismus.

Notation: $\varphi: R \simeq S \text{ oder } R \stackrel{\varphi}{\simeq} S \text{ oder } R \simeq S.$

Bemerkung

Sei φ ein Homomorphismus: φ ist injektiv $\Leftrightarrow \ker \varphi = \{0\}$.

Beispiel

Sei $n \in \mathbb{N}$

Notation

 $a \in \mathbb{Z}; \overline{a} := \text{Rest nach Division durch } n.$

$$\varphi: \quad \mathbb{Z} \quad \to \quad \mathbb{Z}_n$$

$$a \quad \mapsto \quad \overline{a}$$

ist ein Ringhomomorphismus mit $\ker \varphi = \{nz/z \in \mathbb{Z}\} := n\mathbb{Z}$ (siehe Lineare Algebra 1, 2. Vorlesung).

Definition

Ein Teilring $I \subseteq R$ ist ein *Ideal*, wenn aus $r \in R$ und $x \in I$ folgt: $rx \in I$.

Notation: $I \triangleleft R$

Beispiele

$$I = R$$
 und $I = \{0\}$

Terminologie

 $I \lhd R$ und $I \neq R$ heißt $\mathit{echtes}\ \mathit{Ideal}.$

 $I \lhd R$ und $I \neq \{0\}$ heißt nicht triviales Ideal.

Proposition

Sei $\varphi:R\to S$ ein Ringhomomorphismus. Es gelten:

- (1) im φ ist ein Teilring von S.
- (2) $\ker \varphi$ ist ein Ideal von R.

3

Faktorring

Sei $I \triangleleft R$. $R/I := \{x+I \mid x \in R\}$ die Menge der Nebenklassen von R modulo I (siehe Übungsblatt 1, Aufgabe 1.2) (also der Äquivalenzklassen [x] bezüglich $x \sim y \mod I$ genau dann, wenn $x-y \in I$).

Proposition

R/I ist ein Ring mit den Ringoperationen

$$(r+I) + (s+I) := (r+s) + I$$
 und

$$(r+I)\cdot(s+I) := (rs) + I$$

für alle $r, s \in R$ (Übungsblatt 1, Aufgabe 1.2).

Definition

R/I ist der Faktorring "R modulo I".

Satz (Isomorphiesatz für Ringe)

- (1) Sei $\varphi: R \to S$ ein Ringhomomorphismus. Es gilt $R / \ker \varphi \simeq \operatorname{im} \varphi$.
- (2) Umgekehrt: Ist $I \triangleleft R$, dann ist

$$\pi: \quad R \quad \to \quad R/I$$

$$r \quad \mapsto \quad r+I$$

ein surjektiver Ringhomomorphismus mit ker $\pi = I$ (π ist die kanonische Projektion).

Also sind die Ideale genau die Kerne von Ringhomomorphismen.

Beweis

Behauptung die Abbildung von (1)

$$\Phi: R/I \to \varphi(R)$$
$$x+I \mapsto \varphi(x)$$

ist wohldefiniert (i.e. x + I = y + I impliziert $\varphi(x) = \varphi(y)$).

Es ist klar, dass Φ surjektiv und ein Ringhomomorphismus ist. Wir berechnen ker Φ .

$$\Phi(x+I) = 0 \Leftrightarrow \varphi(x) = 0 \Leftrightarrow x \in \ker \varphi \Leftrightarrow x \in I \Leftrightarrow x+I = 0+I;$$

somit ist ker $\Phi = \{0 + I\}$ (das Nullelement der Faktorring R/I).

Beweis von (2) analog.

Beispiel

$$\mathbb{Z}/n\mathbb{Z} \simeq \mathbb{Z}_n$$

4

Korollar 1

Sei $I \lhd R, J \lhd R$ mit $I \subseteq J$ (insbesondere $I \lhd J$). Dann ist $J/I \lhd R/I$ und $(R/I)/(J/I) \simeq R/J$.

Beweis

Die Abbildung

$$\Phi: R/I \to R/J$$
$$x+I \mapsto x+J$$

ist ein surjektiver Ringhomomorphismus mit ker $\Phi=J/I.$