10. Script zur Vorlesung: Algebra (B III)

Prof. Dr. Salma Kuhlmann, Dr. Lorna Gregory, Katharina Dupont WS 2012/2013: 26. November 2012

(WS 2015/2016: Korrekturen vom 28. Januar 2016)

Definition

- (1) $\alpha \in K/F$ ist algebraisch über F (alg/F), wenn es ein Polynom $0 \neq f(x) \in F[x]$ gibt mit $f(\alpha) = 0$.
- (2) Wenn α nicht algebraisch ist, dann heißt α transzendent über F.
- (3) Die Körpererweiterung K/F heißt algebraisch, falls für alle $\alpha \in K$: α ist algebraisch über F.

Proposition 1

Sei α alg /F. Es gibt ein eindeutiges normiertes Polynom $m_{\alpha,F}(x) \in F[x]$, so dass

- (i) $m_{\alpha,F}(\alpha) = 0$.
- (ii) Ist $f(\alpha) = 0$ für ein $f \in F[x]$, dann teilt $m_{\alpha,F}(x)$ das Polynom f(x) in F[x].

Beweis

- Setze $m(x) := m_{\alpha,F}(x) :=$ normiertes Polynom vom minimalem deg, so dass $m(\alpha) = 0$. Sei $f(x) \in F[x]$, schreibe f(x) = q(x)m(x) + r(x), deg $r(x) < \deg m(x)$ oder r(x) = 0. Wir sehen $0 = f(\alpha) \Leftrightarrow r(\alpha) = 0$. Die Minimalität vom deg m(x) impliziert $r(x) \equiv 0$, also m(x)|f(x).
- Ist m'(x) normiert vom minimalem deg mit $m'(\alpha) = 0$, dann gilt wie oben $m'(\alpha)|m(\alpha)$, aber auch $m(\alpha)|m'(\alpha), m(\alpha), m'(\alpha)$ normiert $\Rightarrow m'(x) = m(x)$.

Bemerkung

Vergleiche mit 13. Vorlesung "Lineare Algebra II" vom 1. Juni 2012:

Das Minimal-Polynom vno T in F[x] ist der eindeutige normierte Erzeuger vom Annihilator-Ideal von T

$$\mathcal{A}_T := \{ f \in F[x] | f(T) = 0 \}.$$

2

Definition

 $m_{\alpha,F}(x)$ heißt das Minimal-Polynom von α über F. Wir schreiben m(x), wenn klar.

Proposition 2

Sei $\alpha \in K/F$ algebraisch über F. Es ist $[F(\alpha):F] = \deg m_{\alpha,F}(x)$.

Beweis

$$F(\alpha) \simeq F[x]/ < m(x) > \square$$

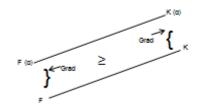
Terminologie

 $\deg \alpha/F := \deg m_{\alpha,F}(x) = \deg F(\alpha)/F.$

Bemerkung

- (1) $L \supseteq K \supseteq F, \alpha \in L$, alg $/F \to \alpha$ alg /K und es gilt
- (2) $m_{\alpha,K}(x)$ teilt $m_{\alpha,F}(x)$ in K[x], insbesondere
- (3) $\deg m_{\alpha,K}(x) \leq \deg m_{\alpha,F}(x)$. Es gilt ferner
- (4) $m_{\alpha,K}(x) = m_{\alpha,F}(x)$ genau dann, wenn $m_{\alpha,F}(x)$ irreduzibel bleibt in K[x]. Wir haben aus 3.:
- (5) $[K(\alpha):K] \leq [F(\alpha):F]$

Für $\alpha \in L$ alg $/F \subseteq K \subseteq L$:



Wir zeigen nun die Umkehrung von Proposition 2.

(Erinnerung: K/F ist endlich, wenn $[K:F] < \infty$, sonst unendlich.)

Proposition 3

Sei $\alpha \in K/F$, so dass $[F(\alpha):F] < \infty$. Dann ist α algebraisch über F.

Beweis

Sei $[F(\alpha): F] = n$, dann sind $F(\alpha) \ni 1, \alpha, \alpha^2, \dots, \alpha^n$ linear abhängig über F. Also existiert $b_i \in F$ nicht alle gleich θ , so dass $\sum_{i=0}^n b_i \alpha^i = 0$. Setze $f(x) := \sum b_i x^i \in F[\alpha]; \neq 0$. Dann gilt $f(\alpha) = 0$; α alg /F.

Bemerkung

 $x \in F(x)$ ist transzendent über F (weil $f(x) = 0 \Leftrightarrow f = 0$ das Nullpolynom ist). Wir sehen, dass F(x)/F eine endlich erzeugte (eigentlich eine einfache) Erweiterung ist, aber $[F(x):F] = \infty$. Also i.a.: K/F endlich erzeugt $\not\Rightarrow K/F$ endlich.

Korollar

K/F ist endlich $\Rightarrow K/F$ algebraisch.

Beweis

Sei $\alpha \in F$. Es ist $[F(\alpha): F] \leq [K: F] < \infty$, also ist α algebraisch über F.

Satz 1

 $F \subseteq K \subseteq L$. Es gilt [L:F] = [L:K][K:F]. (Also insbesondere ist L/F unendlich genau dann, wenn L/F oder K/F unendlich sind.)

Beweis

Zunächst nehmen wir an: [L:K]=m mit $\{\alpha_1,\ldots,\alpha_m\}$ Basis für L/K; [K:F]=n mit $\{\beta_1,\ldots,\beta_n\}$ Basis für K/F. Ein Element λ aus L ist also aus der Form $\lambda=\sum_i a_i\alpha_i$ mit $a_i\in K$.

Schreibe
$$a_i = \sum_j b_{ij}\beta_j \text{ mit } b_{ij} \in F$$
 (**)

$$\rightsquigarrow$$
 Einsetzen von (**) in (*) ergibt $\lambda = \sum_{i,j} b_{ij} \alpha_i \beta_j$. (***)

Also ist span $F\{\alpha_i\beta_j\mid i=1,\ldots,m,j=1,\ldots,n\}=L$. Wir zeigen, dass diese Menge auch F-linear unabhängig ist.

Sei also
$$\sum_{i,j} b_{ij} \alpha_i \beta_j = 0$$
 für $b_{ij} \in F$. (†)

Setze $a_i := \sum_j b_{ij} \beta_j \in K$ und schreibe (†), also $\sum_i a_i \alpha_i = 0$. Nun ist α_i linear unabhängig über

$$K \Rightarrow a_i = 0$$
 für alle i , also $\sum_i b_{ij} \beta_j = 0$ für alle i .

Nun ist β_j linear unabhängig über $F \Rightarrow b_{ij} = 0$ für alle j.

Wir haben gezeigt: $[L:F] = \infty \Rightarrow [L:K] = \infty$ oder $[K:F] = \infty$.

Sei nun [K:F] unendlich, dann ist auch [L:F] unendlich, weil K ein F-Unterraum von L ist. Sei nun $[L:K]=\infty$, dann ist a fortiori $[L:F]=\infty(\lambda_1,\ldots,\lambda_s)$ sind K linear unabhängig $\to \lambda_1,\ldots,\lambda_s$ sind F-linear unabhängig).

Korollar

Sei L/K/F und L/F endlich. Es gilt [K:F]|[L:F].

Wir haben bisher gezeigt, dass α algebraisch über F ist \Leftrightarrow $[F(\alpha):F]<\infty$. Wir sind nun in der Lage dieses für $F(\alpha_1,\ldots,\alpha_n)$ zu verallgmeinern.

Bemerkung

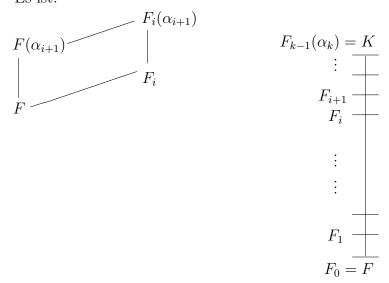
 $F(\alpha_1, \alpha_2) = F(\alpha_1)(\alpha_2) \subseteq K$ (folgt unmittelbar aus der Definition von $F(\alpha_1, \alpha_2)$).

Satz 2

K/F ist endlich $\Leftrightarrow K/F$ ist endlich erzeugt von alg F-Elementen.

Beweis

- "⇒" Setze [K:F] = n. Sei $\{\alpha_1, \ldots, \alpha_n\}$ die F-Basis von K. Jedes α_i ist algebraisch über F. Außerdem ist $K = \operatorname{span}_F \{\alpha_1, \ldots, \alpha_n\} \subseteq F(\alpha_1, \ldots, \alpha_n) \subseteq K$ und damit ist $K = F(\alpha_1, \ldots, \alpha_n)$.
- " \Leftarrow " Sei $K = F(\alpha_1, \ldots, \alpha_k)$. Sei α_i algebraisch über F und $\deg \alpha_i = n_i$. Setze $F = F_0$ und $F_1 = F_0(\alpha_i)$. $F_{i+1} := F_i(\alpha_{i+1})$, so $K = F_{k-1}(\alpha_k)$. Es ist:



Also $[F_{i+1}:F_i] \leq n_{i+1}$. Also (Satz 1) $[K:F] = [F_k:F_{k-1}]\cdots [F_1:F_0] \leq n_1\cdots n_k$ und damit ist K/F endlich.