14. Script zur Vorlesung: Algebra (B III)

Prof. Dr. Salma Kuhlmann, Dr. Lorna Gregory, Katharina Dupont WS 2012/2013: 13. Dezember 2012

(WS 2015/2016: Korrekturen vom 28. Januar 2016)

Erinnerung

 $f(x) \in F[x](\deg f \ge 1)$; α ist eine mehrfache Nullstelle $\Leftrightarrow \alpha$ ist Nullstelle von $Df(x) \Leftrightarrow m_{\alpha,F}|f(x)$ und $m_{\alpha,F}|Df(x)$.

Korollar 1

Sei $f(x)(\deg f \ge 1)$ irreduzibel. Es gilt: f ist inseparabel genau dann, wenn Df = 0. (Das heißt, dass f eine mehrfache Nullstelle hat $\Leftrightarrow Df = 0$).

Beweis

 α ist eine mehrfache Nullstelle $\Leftrightarrow m_{\alpha,F}$ ggT von f und Df. Nun ist f irreduzibel $\Rightarrow \deg m_{\alpha,F} = \deg f > \deg Df$. Also $m_{\alpha,F}|Df \Rightarrow Df \equiv 0$.

Beispiel

- (1) $f(x) = x^{p^n} x \in \mathbb{F}_p[x]$ $Df(x) = p^n x^{p^n - 1} - 1 = -1$ Df hat gar keine Nullstelle, also ist f separabel.
- (2) $f(x) = x^n 1$; $Df(x) = nx^{n-1}$

Annahme: Char F = 0 oder Char $F := p \nmid n$. Dann ist $Df \not\equiv 0$ und hat 0 als einzige Nullstelle. 0 ist aber keine Nullstelle von f, also ist f separabel und die Gleichung

$$x^n - 1 = 0$$

hat n paarweise verschiedene Nullstellen. (Sie heißen die n nte Einzeitswurzel.)

(3)
$$f(x) = x^n - 1$$
; Char $F = p|n$; $Df(x) = nx^n - 1 \equiv 0 \Rightarrow f$ ist inseparabel.

Korollar 2

Sei Char F = 0.

- (i) Sei $f \in F[x]$ irreduzibel (mit deg $f \ge 1$). Dann ist f separable. Allgemeiner
- (ii) f(x) ist separabel genau dann, wenn $f = c \prod p_i(x)$; $0 \neq c \in F$; $p_i \neq p_j$ für $i \neq j$ p_i ist irreduzibel normiert.

2

Beweis

- (i) $f \not\equiv 0 \Rightarrow Df \not\equiv 0$ (weil Char F = 0).
- (ii) Verschiedene Irreduzible (normierte) können keine gemeinsame Nullstelle wegen Eindeutigkeit des Minimal-Polynoms in der Primfaktorisierung

$$f = c \prod_{i=1}^{k} p_i(x) \qquad p_i \neq p_j$$

haben. Außerdem hat keiner der Faktoren eine mehrfache Nullstelle (folgt aus (i)). Also hat f keine mehrfache Nullstelle.

Beispiel

 $(4)f = x^2 - t \in \mathbb{F}_2(t)[x]$. f ist irreduzibel, weil $\sqrt{t} \notin \mathbb{F}_2(t)$.

 $Df \equiv 0$, also ist f irreduzibel, aber inseparabel.

Bemerkung

Sei
$$f(x) = g(x^p) \in F[x]$$
 Char $F = p > 0$; deg $f \ge 1$
i.e. $f(x) = \gamma_m(x^p)^m + \dots + \gamma_1 x^p + \gamma_0$. (*)

Also $Df(x) \equiv 0$ und f ist inseparabel.

Umgekehrt: $f(x) \in F[x](\deg f \ge 1)$ mit $Df \equiv 0$ muss die Gestalt (*) haben, i.e. $f(x) = g(x^p)$ mit $g(x) \in F[x]$.

Proposition 1 (Übungsaufgabe)

Sei Char F = p > 0.

Es gelten
$$(a+b)^p = a^p + b^p$$
 für alle $a, b \in F$
 $(ab)^p = a^p b^p$
und $\varphi : F \to F$
 $a \mapsto a^p$

ist ein injektiver Körper-Homomorphismus (Frobenius).

Korollar 3

$$\mathbb{F}$$
 ist endlich $\Rightarrow \varphi : \mathbb{F} \to \mathbb{F}$
$$a \mapsto a^p$$

ist auch surjektiv, also ein Automorphismus. Das heißt $\mathbb{F} = \mathbb{F}^p := \{a^p; a \in \mathbb{F}\}.$

Beweis

 \mathbb{F} ist endlich, also endlich dimensional über den Primkörper \mathbb{F}_p und kann also nicht isomorph sein zu einem echten Unterraum (siehe Korollar 4 aus "Lineare Algebra I", 13. Vorlesung vom 2.12.2011).

3

Proposition 2

Jedes irreduzible Polynom über einen endlichen Körper \mathbb{F} ist separabel. Ein Polynom $f(x) \in \mathbb{F}[x](\deg f \geq 1)$ ist separabel \Leftrightarrow Produkt von paarweise verschiedenen irreduziblen Polynomen. (Korollar 2 gilt also auch für endliche Körper.)

Beweis

Sei $f \in \mathbb{F}[x](\deg f \ge 1)$; Char $\mathbb{F} := p > 0$, f irreduzibel. f inseparabel $\Leftrightarrow Df = 0 \Leftrightarrow f(x) = g(x^p)$.

Berechne:

$$f(x) = g(x^{p}) = a_{m}(x^{p})^{m} + \dots + a_{1}x^{p} + a_{0}$$

$$= b_{m}^{p}(x^{m})^{p} + \dots + b_{1}^{p}x^{p} + b_{0}^{p}$$

$$= (b_{m}x^{m})^{p} + \dots + (b_{1}x)^{p} + b_{0}^{p}$$

$$= (b_{m}x^{m} + \dots + b_{1}x + b_{0})^{p}$$

Widerspruch.

Bemerkung

Wichtig war: $\mathbb{F}^p = \mathbb{F}$.

Definition

Ein Körper F heißt perfekt, falls Char F = 0 oder Char F = p > 0 und $F = F^p$.

Proposition 3

Proposition 2 gilt für F perfekt (anstatt \mathbb{F} endlich).

Kapitel 3: (Endliche Gruppen)

Definition 1

Sei G eine Gruppe. $H \subseteq G$ ist eine Untergruppe, falls H eine Gruppe ist (mit der Verknüpfung von G), das heißt $H \neq \emptyset$; $x, y \in H \Rightarrow xy \in H, x^{-1} \in H$.

Definition 2

- (i) Seien G, H Gruppen. Eine Abbildung $\varphi : G \to H$ ist ein *Gruppenhomomorphismus*, wenn $\varphi(xy) = \varphi(x)\varphi(y)$ ist für alle $x, y \in G$.
- (ii) Ein bijektiver Homomorphismus heißt Isomorphismus.

Notation:
$$|G| := \begin{cases} \sharp & \text{der Elemente in } G, \text{ falls } G \text{ endlich} \\ \infty & \text{sonst} \end{cases}$$