16. Script zur Vorlesung: Algebra (B III)

Prof. Dr. Salma Kuhlmann, Dr. Lorna Gregory, Katharina Dupont

WS 2012/2013: 20. Dezember 2012

(WS 2015/2016: Korrekturen vom 28. Januar 2016)

Satz 1

Sei $H = \langle x \rangle$ zyklisch

- (1) Sei $K \leq H$, dann ist K zyklisch.
- (2) Wenn $|H| = \infty$, dann sind $\langle x^j \rangle \neq \langle x^i \rangle$ für $i \neq j$ und $\{\langle x^i \rangle i \in \mathbb{N}_0\}$ ist die Menge aller Teilgruppen von H. (Übungsaufgabe).
- (3) Wenn $|H| = n < \infty$ und $a \in \mathbb{N}$ mit a|n, dann gibt es eine eindeutige Teilgrupe der Ordnung a, nämlich $< x^{n/a} >$ und $\{< x^d > |d|n\}$ ist die Menge aller Teilgruppen von $H \neq \{1\}$.

Beweis

- (1) $K = \{1\}$ ist zyklisch, also ohne Einschränkung $K \neq \{1\}$. Sei $k \in \mathbb{N}$ die kleinste, so dass $x^k \in K$. Also ist $\langle x^k \rangle \leq K$. Sei $x^a \in K$; $DA \Rightarrow a = qk + r$ mit $0 \leq r < k$ und $x^r = x^a x^{-qk} \in K$. Da k minimal gewählt ist, muss r = 0 sein. Also a = qk und $x^a = (x^k)^q \in \langle x^k \rangle$. Also $K < \langle x^k \rangle$.
- Also $K \le \langle x^k \rangle$.

 (3) Sei $d := \frac{n}{a}$, also $d \mid n$ und $\mid x^d \mid = \frac{n}{ggT(n,d)} = n/d = n/(n/a) = a$. Somit ist $\mid \langle x^d \rangle \mid = a$.

 Eindeutigkeit: Sei $K \le H$ mit $\mid K \mid = a$ und $b \in \mathbb{N}$ kleinste, so dass $K = \langle x^b \rangle$. Wir

berechnen $\frac{n}{d} = a = |K| = |x^b| = \frac{n}{ggT(n,b)}$. Daraus folgt d = ggT(n,b), insbesondere d|b. Also $x^b \in \langle x^d \rangle$ und $K = \langle x^b \rangle \langle \langle x^d \rangle$.

Da aber
$$|K| = a = |\langle x^d \rangle|$$
, folgt nun $K = \langle x^d \rangle$.

Proposition 2

Sei \mathcal{A} eine nichtleere Menge von Teilgruppen, dann ist $\bigcap \mathcal{A}$ auch eine Teilgruppe.

Beweis

Setze $K := \bigcap \mathcal{A}; a, b \in K \Rightarrow ab^{-1} \in A$, für alle $A \in \mathcal{A}$ (weil $A \leq H$), also $ab^{-1} \in K$ und damit $K \leq H$.

2

Definition 1

Sei $S \subseteq H$ eine Untermenge; $\mathcal{A} := \{K \leq H; S \subseteq K\}.$

Definiere $\langle S \rangle = \bigcap \mathcal{A}$. $\langle S \rangle$ ist die (für die Inklusion) kleinste Teilgruppe von H, die S enthält. $\langle S \rangle$ heißt die Teilgruppe, die von S erzeugt ist.

Konvention: $\langle \emptyset \rangle = \{1\}$

Notation: $S = \{a_1, ..., a_n\}; \langle S \rangle = \langle a_1, ..., a_n \rangle$ (wenn S endlich ist).

Proposition 3

Sei
$$S \neq \emptyset$$
. $\langle S \rangle = \{a_1^{\varepsilon_1} \dots a_n^{\varepsilon_n}; n \in \mathbb{N}; a_i \in S; \varepsilon_i = \pm 1\}$.

Beweis

Übungsaufgabe zu zeigen: Diese Menge ist eine Teilgruppe. Sie enthält S und muss in jeder Teilgruppe, die S enthält enthalten sein.

Spezialfall: Wenn H abelsch. (Übungsaufgabe, Übungsblatt).

Proposition 4

Sei $\varphi:G\to H$ ein Homommorphismus. Es gelten

- (1) $\varphi(1) = 1$
- (2) $\varphi(g^{-1}) = \varphi(g)^{-1}$
- (3) $\varphi(g^n) = \varphi(g)^n$ für alle $n \in \mathbb{Z}$
- (4) $\ker \varphi := \{g \in G; \varphi(g) = 1\} \le G$
- (5) im $\varphi := \{ h \in H; \exists g \in G : \varphi(g) = h \} \le H$

Wir wollen Faktorengruppen definieren.

Definition 2

Sei $H \leq G$ und $g \in G$.

 $gH := \{gh \mid h \in H\}$ ist die linke Nebenklasse von g bezüglich H und $Hg := \{hg \mid h \in H\}$ ist die rechte Nebenklasse.

Additive Notation: g + H und H + g

Proposition 5

Sei $H \leq G$. Es gelten:

- (1) Die Menge der linken Nebenklassen bilden eine Partition von G i.e. $G = \bigcup_{g \in G} gH$ und $uH \cap vH \neq \emptyset \Rightarrow uH = vH$.
- (2) Für alle $u, v \in G : uH = vH \Leftrightarrow v^{-1}u \in H$.

Beweis

(1) $1 \in H$, also $g \in gH$ für alle $g \in G$. Also $G = \bigcup gH$. Wenn $uH \cap vH \neq \emptyset$. Sei $x \in uH, x \in vH$, also $x = uh_1 = vh_2$ für geeignete $h_1, h_2 \in H$. Also $u = v\underbrace{h_2h_1^{-1}}_{\in H}$.

Sei $t \in H$. Es gilt also $ut = v(h_2h_1^{-1})t = v(h_2h_1^{-1}t) \in vH$, so dass $uH \subseteq vH$. Analog: $uH \supset vH$.

(2) uH = vH genau dann, wenn $u \in vH$ genau dann, wenn u = vh für ein $h \in H$ genau dann, wenn $v^{-1}u \in H$.

Proposition 6

Sei $N \leq G$. Die Verknüpfung

$$(uN)(vN) := (uv)N$$

ist wohldefiniert genau dann, wenn

$$ghg^{-1} \in N \text{ für alle } g \in G; \text{ für alle } h \in N$$
 (*)

Beweis

" \Rightarrow " Wohldefiniert \rightarrow

$$\left. \begin{array}{l} u, u_1 \in uN \\ v, v_1 \in vN \end{array} \right\} \Rightarrow (uv)N = (u_1v_1)N$$

Sei $g \in G$, $n \in N$, dann setze u = 1, $v = g^{-1}$, $u_1 = n$, $v_1 = g^{-1} \Rightarrow 1g^{-1}N = ng^{-1}N$ i.e. $g^{-1}N = ng^{-1}N$.

Nun: $ng^{-1} \in ng^{-1}N$, also $ng^{-1} \in g^{-1}N$. Also $ng^{-1} = g^{-1}n_1$ für geeignete $n_1 \in \mathbb{N}$. Also $gng^{-1} = n_1 \in \mathbb{N}$.

" \Leftarrow " Sei $u, u_1 \in uN, v, v_1 \in vN$. Zu zeigen: $(uv)N = (u_1v_1)N$.

Schreibe $u_1 = un, v_1 = vm; n, m \in N$. Wir zeigen: $u_1v_1 \in (uv)N$.

Wir berechnen: $u_1v_1 = (un)(vm) = u(vv^{-1})nvm = uv(\underbrace{v^{-1}nv}_{:=n_1 \in N})m = uvn_1m = uv(\underbrace{n_1m}_{\in N})$

Zusatz zu Proposition 6

Wenn wohldefiniert, dann definiert die Verknüpfung (uN)(vN) := (uv)N eine Gruppenoperation auf die Menge der linken Nebenklassen. (Übungsaufgabe).

Definition

Sei $N \leq G$. N ist normal, falls (*) in Proposition 6 gilt. Schreibe $N \triangleleft G$.

Beispiel

Sei φ ein Homomorphismus. $N := \ker \varphi$ ist normal, weil

$$\varphi(gng^{-1}) = \varphi(g)\varphi(n)\varphi(g^{-1}) = \varphi(g)\varphi(g)^{-1} = 1.$$

Also $gng^{-1} \in N$ für alle $g \in G$ und $n \in N$.

Umgekehrt: Sei G/N die Gruppe der linken Nebenklassen für ein $N \triangleleft G$.

4

Proposition 7

$$\varphi: \quad G \quad \twoheadrightarrow \quad G/N$$

$$\quad g \quad \mapsto \quad gN$$

ist ein surjektiver Gruppenhomomorphismus mit ker $\varphi=N.$