22. Script zur Vorlesung: Algebra (B III)

Prof. Dr. Salma Kuhlmann, Dr. Lorna Gregory, Katharina Dupont WS 2012/2013: 24. Januar 2013

(WS 2015/2016: Korrekturen vom 28. Januar 2016)

Unser nächstes Ziel ist es, die Sylow Sätze zu beweisen (Sonderfälle, für die die Umkehrung von Lagrange gilt).

Sylow 1

Sei G eine endliche Gruppe, p Primzahl und $k \in \mathbb{N}$, so dass $p^k||G|$, dann hat G eine Teilgruppe der Ordnung p^k .

Definition 1

Eine solche Teilgruppe H mit $H = p^m$, m maximal, ist eine Sylow-p-Untergruppe.

Sylow 2

- (1) Sylow-p-Untergruppen sind konjugiert, das heißt es existiert $a \in G$ mit $H_2 = aH_1a^{-1}$.
- (2) Die Anzahl der Sylow-p-Untergruppen ist ein Divisor von [G:H] für eine (jede) Sylow-p-Untergruppe H und ist $\equiv 1 \mod p$.
- (3) Jede Untergruppe der Ordnung p^k ist enthalten in einer Sylow-p-Untegruppe.

Für die Beweise der Sylow-Sätze brauchen wir Gruppenaktionen:

Definition 2

Sei G eine Gruppe und S eine Menge $(S \neq \emptyset)$.

$$G \times S \rightarrow S$$

$$(g,x) \mapsto gx$$

ist eine Abbildung, so dass

- (i) 1x = x für alle $x \in S$
- (ii) $g_1g_2x = g_1(g_2x)$ für alle $x \in S$ und für alle $g_1, g_2 \in G$.

heißt Gruppenaktion. Wir sagen G operiert auf S.

2

Definition 3

Sei G operiert auf S und auf S'. Die Aktionen heißen äquivalent, wenn es eine Bijektion $v: S \to S'$ gibt pd. v(gx) = gv(x) für alle $g \in G$ und $x \in S$.

Proposition 1

Sei G operiert auf S. Definiere

$$T(g): S \longrightarrow S$$
 $x \mapsto gx$

Dann ist T(g) eine Permutation auf S.

Notation

Sym S bezeichnet die Gruppe der Permutationen von S.

Fortsetzung mit Ansatz von Proposition 1:

Proposition 2

Die Abbildung

$$T: G \longrightarrow SymS$$
 $g \mapsto T(g)$

ist ein Gruppenhomomorphismus.

Definition 4

 $\ker T \triangleleft G$ heißt der ker der Aktion. Die Aktion heißt effektiv, wenn $\ker T = \{1\}.$

Beispiele

- (0) G operiert auf S und $H \leq G \Rightarrow H$ operiert auf S (durch Einschränkung) G operiert auf S und $\mathcal{O} \subseteq S \Rightarrow G$ operiert auf \mathcal{O} (auch Einschränkung, wenn wohldefiniert!)
- (i) S = G. Definiere die Aktion "linke Multiplikation":

$$(g,x)\mapsto \underbrace{gx}_{\text{Produkt in }G}$$
 ist eine effektive Aktion.

- (ii) Dual dazu "rechte Multiplikation"
- (iii) Konjugation: $S = G; (g, x) \mapsto gxg^{-1}$.

Was ist hier der ker dieser Aktion?

$$\ker T = \{g \mid \forall x \in G : gxg^{-1} = x\}$$

$$= \{g \mid \forall x \in G : gx = xg\}$$

$$:= C_G$$

 C_G heißt Zentrum von G und ist eine normale Untergruppe.

Definition 5

 $H \leq Sym S$ heißt Permutationsgruppe.

3

Satz (Cayley)

Jede Grupe ist isomorph zu einer Permutationsgruppe.

Beweis

S = G operiert mit der linken Multiplikation auf G.

$$\begin{array}{ccc} T: & G & \longrightarrow & Sym \ G \\ & g & \mapsto & T(g) \end{array}$$

hat trivialen ker $T = \{1\}$. Also $G \simeq T(G) \leq Sym G$.

Äquivalenzrelation durch Aktion induziert

- 1. Seien $x,y\in S$. Setze $x\underset{G}{\sim}y,$ wenn es ein $g\in G$ gibt, pd. y=gx. $\underset{G}{\sim}$ ist eine Äquivalenzrelation.
- 2. $[x] := Gx := \{gx \mid g \in G\}$ heißt die Orbit oder Bahn von x.
- $3. S = \bigsqcup_{x \in S} Gx.$

Beispiele (Fortsetzung)

- (i) Sei $H \leq G, S = G$. H operiert durch linke Multiplikation $[x] = Hx = \{hx \mid h \in H\}$ (die Nebenklasse von x).
- (ii) G operiert auf G durch Konjugation $[x] = \{gxg^{-1} \mid g \in G\}$ heißt die Konjukationsklasse.

Proposition 3

- (i) Die Konjugationsklasse von x ist $\{x\}$ genau dann, wenn $x \in C_G$.
- (ii) Also ist das Zentrum von G die Vereinigung solcher Konjugationsklassen.