
Useful English/German Vocabulary
Splitting field - Zefällungskörper
Field extension - Körpererweiterung

Definition 0.1. Let E/F be a field extension. The Galois group,
denoted Gal(E/F ), of E/F is the group of automorphisms of E which
fix F pointwise i.e. the automorphisms µ of E such that for all α ∈ F ,
µ(α) = α.

Definition 0.2. Let F be a field and G be a subgroup of the group of
automorphisms of F . The set

Inv(G) := {a ∈ F | σ(a) = a for all σ ∈ G}

is a subfield of F . We call it the G-fixed subfield of F .

Let E be a field and G the group of automorphisms of E. Let Γ be
the set of subgroups of G and Σ the set of subfields of E. The maps

Γ→ Σ, H 7→ Inv(H)

and
Σ→ Γ, F 7→ Gal(E/F )

have the following properties:

(i) G1 ⊆ G2 ⇒ Inv(G1) ⊇ Inv(G2)

(ii) F1 ⊆ F2 ⇒ Gal(E/F1) ⊇ Gal(E/F2)

(iii) Inv(Gal(E/F )) ⊇ F

(iv) Gal(E/Inv(G)) ⊇ G

See exercise 1 sheet 12.

Lemma 0.3. Let E/F be a splitting field of a separable polynomial
with coefficients in F . Then

|Gal(E/F)| = [E : F ].



Proof. What we will actually show is the following:

Let τ : F → F ′ be an isomorphism of fields. Let p(x) ∈ F [x] be a
separable. Let E be a splitting field for p(x) and E ′ be a splitting
field for τ(p)(x). There exist exactly [E : F ] extensions of τ to an
isomorphism σ : E → E ′.

We proceed by induction on [E : F ]. If [E : F ] = 1 the statement is
clear.
Fix α a root of p(x) in E\F with minimal polynomial mα(x). For
each β a root of τ(mα)(x), let τβ : F (α) → F ′(β) be the (unique)
isomorphism extending τ with τβ(α) = β.
For each root β of τ(mα)(x) let Sβ be the set of isomorphisms E → E ′

extending τβ. If β 6= β′ then Sβ ∩ Sβ′ = ∅.

The field E remains the splitting field of p(x) over F (α) and E ′ remains
the splitting field of τβ(p)(x) over F ′(β). Since [E : F (α)] < [E : F ],
by the induction hypothesis,

|Sβ| = [E : F (α)].

Since mα(x) divides p(x), mα(x) is separable and thus, so is τ(mα)(x).
Thus τ(mα)(x) has [F (α) : F ] distinct roots.
Each isomorphism σ : E → E ′ extending τ maps α to a root of
τ(mα)(x). Thus each σ restricts to some τβ. So each σ is in Sβ for
some β a root of τ(mα)(x).
Thus there are exactly [E : F (α)][F (α) : F ] isomorphisms σ : E → E ′

extending τ : F → F ′. So we have proved our claim.
Setting E = E ′, F = F ′ and τ equal to the identity homomorphism
we get our lemma as stated.



Lemma 0.4. Let G be a finite group of automorphisms of a field E
and let F = Inv(G). Then

[E : F ] ≤ |G|.

Remark/Reminder from linear algebra: A system of n homoge-
neous linear equations over a field E in m variables with n < m has a
non-trivial solution. (See LA I, Korollar 2, 7. Vorlesung am 11.11.11)

proof of lemma. Let n = |G| and G = {µ1 = 1, µ2, ..., µn}. We need
to show that any m > n elements of E are linearly dependent over F .
Let u1, ..., um ∈ E. Consider the system of linear equations in variables
x1, ..., xm

m∑
j=1

µi(uj)xj = 0, 1 ≤ i ≤ n. (1)

Let (b1, ..., bm) be a non-trivial solution with the least number of bi 6=
0. By permuting the variables xi we may assume b1 6= 0 and by
multiplying through by b−11 we may assume b1 = 1.

We now show by contradiction that each bi ∈ F := Inv(G). Without
loss of generality we may suppose b2 /∈ F and 1 ≤ k ≤ n is such that
µk(b2) 6= b2.
Applying µk to 1 we get that

m∑
j=1

(µkµi)(uj)µk(bj) = 0, 1 ≤ i ≤ n.

Since µkµ1, ...., µkµn is just a permutation of µ1, ..., µn,

(µk(1), µk(b2), ..., µk(bm)) = (1, µk(b2), ..., µk(bm))

is a solution to 1.
Thus

(0, b2 − µk(b2), ..., bm − µk(bm))



is a solution to 1 and is non-trivial since b2 − µk(b2) 6= 0. But this
solutions has fewer zero entries than our original solution. So we have
a contradiction. Thus each bi ∈ F and from the first equation in 1:

m∑
j=1

ujbj = 0.

Thus u1, ..., um are linearly dependent over F .

Definition 0.5. We say an algebraic field extension E/F is separable
if the minimal polynomial of every element of E over F is separable.

Theorem 0.6. Let E/F be a field extension. The following are equiv-
alent:

1. E is a splitting field of a separable polynomial p(x) ∈ F [x].

2. F = Inv(G) for some finite group of automorphisms of E.

3. E is a finite dimensional, normal and separable over F .

Moreover, if E and F are as in (1) and G = Gal(E/F ) then F =
Inv(G) and if G and F are as in (2), then G = Gal(E/F ).

Proof. (1)⇒(2) Let F ′ = Inv(Gal(E/F )) and note F ′ ⊇ F . Clearly E
is a splitting field of p(x) over F ′ and since Gal(E/F ) fixes F ′ pointwise,
Gal(E/F ) = Gal(E/F ′).

By lemma 0.3, [E : F ] = |Gal(E/F )| and [E : F ′] = |Gal(E/F ′)|.
Thus, since [E : F ] = [E : F ′][F ′ : F ], [F ′ : F ] = 1. Thus F = F ′. So
(2) holds.
Note we have also shown that F := Inv(G) for G := Gal(E/F ), which
is the first part of the moreover.



(2) ⇒ (3) E is finite dimensional over F by lemma 0.4. Let α ∈ E.
Let α1 = α, α2, ..., αm be the orbit of α under the action of G. Let
g(x) =

∏m
i=1(x− αi). For any σ ∈ G,

σ(g)(x) =
m∏
i=1

(x− σ(αi)) = g(x)

since σ just permutes the elements of {α1, ..., αm}. Thus g(x) ∈ F [x].

Since g(α) = 0 and g(x) ∈ F [x], the minimal polynomial of α over F
divides g. Since the αis are all different, g is separable and thus the
minimal polynomial of α is separable. So E/F is separable.
Moreover, all roots of the minimal polynomial of α are in E. Thus E
is a normal over F (it is the splitting field of the minimal polynomials
over F of all elements α ∈ E).

(3)⇒ (1) Since E/F is normal and finite dimensional, E is the splitting
field of a finite number of polynomials p1, ..., pn ∈ F [x]. We may as
well assume that each of these polynomials is monic, irreducible over
F and that no two are equal. Thus, each polynomial pi is the minimal
polynomial of some α ∈ E over F . Thus, since they are non-equal,
they also have no common roots. Therefore, there product p1 · · · pn is
separable and E is its splitting field.

We now prove the second part of the “moreover”. Suppose F = Inv(G)
for some finite group of automorphisms of E. Then by lemma 0.4, [E :
F ] ≤ |G|. Since (1) holds, lemma 0.3 says that Gal(E/F ) = [E : F ].
So, since G is a subgroup of Gal(E/F ), G = Gal(E/F ).

Definition 0.7. We call a field extension E/F which satisfies any (and
hence all) the equivalent conditions of the above theorem a Galois
extension.



Theorem 0.8 (Fundamental theorem of Galois theory). Let E/F be
a Galois extension with G := Gal(E/F ). Let Γ be the set of subgroups
of G := Gal(E/F ) and let Σ be the set of intermediate fields between
E and F . The maps

H 7→ Inv(H)

K 7→ Gal(E/K)

are inverse bijective maps. Moreover, we have the following properties:

(i) H1 ⊇ H2 ⇔ Inv(H1) ⊆ Inv(H2).

(ii) |H| = [E : Inv(H)], [G : H] = [Inv(H) : F ]

(iii) H in G is normal if and only if Inv(H) is normal over F . In
this case

Gal(Inv(H)/F ) ∼= G/H


