Script zur Vorlesung: Lineare Algebra I **14**

Prof. Dr. Salma Kuhlmann

Kapitel 2: § 4 Koordinaten

Definition 14.1.

Sei V endlich dim K-Vektorraum; dim V = n.

Eine geordnete Basis ist ein n-Tupel $(\alpha_1, \ldots, \alpha_n)$; $\alpha_i \in V$, so dass $\mathcal{B} = \{\alpha_1, \ldots, \alpha_n\}$ eine Basis

Notation und Terminologie

Wir schreiben $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ ist eine geordnete Basis. (Wir werden nicht $(\alpha_1, \dots, \alpha_n)$ schreiben.)

Lemma 14.2.

Sei V ein endlich dim K-Vektorraum; $\alpha \in V$, dann existiert ein eindeutiges n-Tupel $(x_1, \ldots, x_n) \in K^n \text{ mit } \alpha = \sum_{i=1}^n x_i \alpha_i.$

Beweis

$$\alpha = \sum_{i=1}^{n} z_i \alpha_i \Rightarrow \sum_{i=1}^{n} (x_i - z_i) \alpha_i = 0 \Rightarrow x_i - z_i = 0 \Rightarrow x_i = z_i, \text{ für alle } 1 \le i \le n.$$

- Definition 14.3.
 (1) x_i ist die *i-te Koordinate von* α *bezüglich* \mathcal{B} .
 - (2) (x_1, \ldots, x_n) ist das Koordinaten-Tupel von α bezüglich \mathcal{B} .

Definition 14.4.

V, W sind K-Vektorräume.

- (1) $T: V \to W$ ist eine lineare Abbildung (oder Transformation), falls
 - (a) $T(\alpha + \beta) = T(\alpha) + T(\beta)$
 - (b) $T(c\alpha) = cT(\alpha)$; $\alpha, \beta \in V; c \in K$; (a) und (b) sind äquivalent zu: $\forall \alpha, \beta \in V, \forall c \in K$
 - (c) $T(c\alpha + \beta) = cT(\alpha) + T(\beta)$

$$\begin{array}{ll} \mathbf{Bemerkung} \\ T(0) & = & T(0+0) \\ & = & T(0) + T(0) \end{array} \right\} \Rightarrow T(0) = 0.$$

(2) T ist eine Isomorphie oder ein Isomorphismus, falls T ferner bijektiv ist.

Notation

$$V \stackrel{T}{\simeq} W \text{ oder } V \simeq W$$

Terminologie

V und W sind isomorph.

Lemma 14.5.

Sei T eine lineare Transformation. Dann ist T injektiv genau dann, wenn $\forall \alpha(T(\alpha) = 0 \Rightarrow \alpha = 0)$.

Beweis

" \Rightarrow " T ist injektiv und $T(\alpha) = 0 = T(0)$. Also $\alpha = 0$.

"\(\infty\)" Sei
$$T(\alpha_1) = T(\alpha_2)$$
, dann $T(\alpha_1) - T(\alpha_2) = 0$, i.e. $T(\alpha_1 - \alpha_2) = 0$.
Also $\alpha_1 - \alpha_2 = 0$ und $\alpha_1 = \alpha_2$.

Satz 14.6.

 $\dim V = n, V \text{ ein } K\text{-Vektorraum}, \Rightarrow V \subseteq K^n.$

Beweis

Sei $\mathcal{B} = \{\alpha_1, \dots, \alpha_n\}$ eine geordnete Basis. Definiere $T: V \to K^n$ $\alpha \mapsto (x_1, \dots, x_n)$

:= Koordinaten-Tupel von α bezüglich \mathcal{B} .

$$T(\alpha + \beta) \stackrel{?}{=} T(\alpha) + T(\beta).$$

Sei
$$\alpha = \sum x_i \alpha_i$$
, $\beta = \sum y_i \alpha_i$, $\alpha + \beta = \sum (x_i + y_i) \alpha_i$ eindeutig $\Rightarrow T(\alpha + \beta) = (x_1 + y_1, \dots, x_n + y_n) = (x_1, \dots, x_n) + (y_1, \dots, y_n) = T(\alpha) + T(\beta)$.

Analog $T(c\alpha) = cT(\alpha)$.

$$T(\alpha) = (0, \dots, 0) \Rightarrow \alpha = 0$$
, weil $x_1 = \dots = x_n = 0$.

So T injektiv.

Sei
$$(x_1, \ldots, x_n) \in K^n$$
. Setze $\alpha := \sum x_i \alpha_i \in V$. Es gilt $T(\alpha) = (x_1, \ldots, x_n)$. So T surjektiv. \square

Notation

Koordinaten Spaltenmatrix von α bezüglich \mathcal{B} :

$$[\alpha]_{\mathcal{B}} := \left(\begin{array}{c} x_1 \\ \vdots \\ x_n \end{array}\right).$$