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1. I n t r o d u c t i o n  

A partially ordered set (S, < )  is an ordered set  if Vz, 9 E S, x <~ V or x />  71. Assume 
throughout  the rest o f  the paper that all groups are Abelian. 

Let A1 and A2 be subsets of  an ordered set A. Let A1 < A2 if al  E A1 and 

a2 E A2 =~ al  < a2. If  A1 < Az and if the cardinality card(Ai  t5 A2) < Ra implies 

the existence o f  a E A such that Ai  < {a)  < A2, Hausdorff  [9, pp. 180, 181] called 

A an r/a-set. Thus A is a dense ordered set without end points ¢ = ~  A is an r/0-set. 

Hausdorff  also proved that the order  type of  an ~ - s e t  of  power R~ is unique up to 
isomorphism. Let ~ > 0. In 1955 Erd~s, Gitlman, and Henriksen [7] proved that a 
real closed field that is an r/a-set o f  power  Ra is determined by its order type. In 

1960 the first author [1] proved the same result for ordered divisible groups. 

Erd])s, Gilhnan, and Henriksen asked the fol lowing question [7, Section 5.1]: "Is 

a non-denumerable  real-closed field, in particular, if it is non-archimedean character- 
ized by its type o f  order as an ordered set"? One might go on to look for a complete 
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set of invariants for a real closed field. Dense ordered sets without end points, or- 
dered divisible groups, and real closed fields all have the following important model 
theoretic property: they are all o-minimal. (A structure M is o-minimal if every 
subset of it that is definable with parameters in M is a finite union of intervals of 
M. See [12] for definitions and properties.) Let x := Ra with c~ > 0. o-minimal 
structures have many interesting properties: e.g., the following. 

THEOREM 1.1. M is R-saturated if  and only i f  M has a x-saturated order type. 

The order type of a dense ordered set without end points, an ordered divisible group, 
or a real closed field, is n-saturated if and only if it is an r/,~-set. Thus from the 
uniqueness of saturated models and Theorem 1.1, one can prove that the theorems 
cited of Hausdorff; Erd~s, Gillman, and Henriksen; and the first author, follow 
immediately. In this language the question engendered by that of Erd~s, Gilhnan, and 
Henriksen translates as follows: what invariants characterize an o-minimal structure? 

The search for a natural solution of this classification problem for o-minimal 
theories is suggested by such important model theoretic properties as the existence 
and uniqueness of prime models, and Vaught's conjecture (see [12] and [11] for 
details). However, order type often does not characterize ordered structures. Having 
made standard assumptions about x in Section 3, we prove that there exist 2 x pair- 
wise nonisomorphic ordered groups (respectively ordered fields) that are q,~-sets of 
power x, necessarily all having the same order type. These examples are not divisible 
(respectively not real closed) and thus not o-minimal (see [12]). All analogous result 
is obtained in Section 4, even under the additional hypothesis of o-minimality, but 
without the condition that the examples are ~7~-sets- In Section 5, having dropped the 
condition that the examples are of power x, it is shown that there exist two ordered 
divisible groups that are ~Ta-sets which are isomorphic as ordered sets, but not as 
ordered groups, and that there exist two real closed fields that are ~7,~-sets which 
are isomorphic as ordered additive groups, but not as ordered fields. However, the 
second author has proved [10] that the order type does determine a group up to 
isomorphism for the class of Archimedean-complete, ordered divisible groups of 
reverse ordinal rank. 

2. Background 

For x, g, z in an ordered group (G, +, 0, <), let 

:= max(z , -x} .  

x E G ~ Ix] E G has all the expected properties. 
Let x ,,, y if 3n E 1~ such that Ixl <~ n[y[ and lyl <, nix[. "~ is an equivalence 

relation on G. Let [G] be the set of equivalence classes of G rood --,. Let [z] E [G] 
such that x E [z]. [.]: x E G ~ [x] E [G] is surjective. 
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Let x << y if Vn e N, nix[ < lYl- 

x E G =ez x ~g. x. Vz, y, z E G, x << y, and y << z =c, x << z. 

Let [x] < [y] ¢==~ x << y. 

[G] is an ordered set, - o o  := [0] being its least element. Call [.] the natural 
valuation of G, call [G] its value set, call [G]* := [G] \ { -ec}  its essential value 
set, and call the order type of [G]* the rank of G. 

Let m be an order-preserving map of [G] onto an ordered set F; then v := m([.]) 
is a natural valuation of G, and F is a value set of G. Let F* := m([G]*). 

For all x, y e G, v(x + y) ~< max {v(x), v(y)}. 

Call C C_ G convex if c E C, if g E G, and if Igl ~ [el imply g E C. 

For all 3' E F* let G "r := {x E G: v(x) <~ 7} and let G. r := {z E 
G: v(~) < 7}. 

Let G -~° := 0 and let G _ ~  := 0. 

G 7 and G-r are convex subgroups of G. B(G, 7) := GT/G7 has a unique order 
making it an Archimedean ordered group such that the canonical homomorphism 
of G "~ onto B(G,7)  preserves 4.  B ( G , - c c )  = 0, and 7 E F* ~ B(G, 7) 7£ 0. 
(B(G, 7))7~r. is called a skeleton S(G) of G. Let f be an isomorphism of G onto 
an ordered group Gq Since 

x ,.., y ~ f ( x ) , ~  f ( y )  and x < < y  ¢==~ f ( x )  << f(y),  

f induces the following order-preserving surjection of value sets: 

:o: ~(~) e r ~ ,  , v'(f(~))  e r~, .  

For each 7 E FG, f induces an isomorphism f7 of ordered groups as follows: 

+ a~ e B(C,-:) ~-~ f (~)  + GL(~) e B (C', f~,(~)). (1) 

Hence S(G) is an invariant of G. Let G* := G \ {0}. 
A family (B(a))aea* of nonzero, Archimedean, ordered groups indexed by all 

ordered set A* will be called an ordered system of Archimedean ordered groups. 
Note: S(G) is such a family. Let (B(a))~eA. be an ordered system of Archimedean 
ordered groups, and let I1 be its Cartesian product. For p E 17 let 

supp(p) := { a E A*: p(a) 7 £ 0}, 

and call it the support of p. 
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Let H := {p E H: supp(p) is an anti-well-ordered subset of A*}. 

H is a subgroup of rI. For h E H*, let v(h) be the greatest element of supp(h). 
Let v(0) := - o o .  v maps H onto A := A* tA {-oo} .  Let the order on A* be extended 
to A by stipulating that a > - o o ,  Va E A*. Let H be given the lexicographic order. 

H is an ordered group called the Hahn product of (B(a))aEA*. 

Let H~ := {h E H: card(supp(h)) < ~}. 

Hx is a subgroup of  H.  Let v~ := viH~. v (respectively, v~) is a natural valuation 
of H (respectively, H~), having essential value set A*, and skeleton (B(a))aea.. 

Let (F,  +,- ,  0, 1, <)  be an ordered field. (F,  +, 0, <)  is an ordered group, [.] is its 
natural valuation, and [F] is its value set. Let m be an order-preserving mapping of 

[F] onto an ordered set F. v := m([-]) is a natural valuation of (F,  +, 0, <), which 
has F as its value set. Let G := F*. G has a unique addition such that vlF* is a 

homomorphism of (F*, . ,  1, <)  onto the ordered group (G, +, <). 

Let 0 := {z E F:  v(x) <~ 0}, and let M := {z E F: v(z) < 0}. 

v is a valuation of F,  G is its value group, O is its valuation ring, and M is the 

maximal ideal of O. Let p be a homomorphism of O having kernel M. p is a place 
of F associated with v. Let p(O) := K be called a residue class field of v. K has 
a unique ordering such that p preserves <~. K is an Archimedean ordered field. K 

and G are invariants of F.  (See, e.g., [13] for details.) 

Let K be an Archimedean field, and let G be an ordered group; then (K, +, 0, < ) a  
is an ordered system of Archimedean ordered groups. Its Hahn product H is an 
ordered group. H~ is a subgroup of  H, which may also be denoted by H(G, K)~. 

For all x , y  E H,  and for all g E G, let ( z .  y)(g) := ~ x(a)y(b). 
a+b=g 

Hahn [8] proved that (H, + , . ,  0, t, <)  is an ordered field, v is a valuation of H 

having K as its residue class field and G as its value group. H~ is a subfield of H. 
v~ := vlH~ is a valuation on H~ having K as its residue class field and G as its 

value group. 

3. Examples, Part 1 

ASSUMPTION 3.1. a > 0, n := ~ is regular, and ~ < ~  2 s~ <<. x. 

It is well-known (see e.g., [14]) that Assumption 3.1 is equivalent to: 
o~ > 0, and there exists an O~-set E of power x. 
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Let I~ denote the set of all positive integers, let Z denote the ring of integers, let Q 
denote the field of rational numbers, and let ~ denote the field of real numbers. ~ E  
is an ordered system of Archimedean ordered divisible groups. Let H be its Hahn 
product, and let v be the natural valuation of H having value set F := E U { - o o ) .  
(See Section 2 for definitions.) 

For all T E p(E), let G(T):= {h e H~: h(T) C Z}. 

LEMMA 3.1. (a) G(T) is a subgroup of H~ that is an rla-set of power x. 
(b) G(o) = H~, and thus is divisible. (c) T # o ::~ G(T) is not divisible. 

Proof [2, 3] =¢, (a). (b) and (c) are obvious. [] 

LEMMA 3.2. (a) There exists a family { E~: A E 2 ~ } of nonempty, pair-wise non iso- 
morphic, ordered subsets orE. (b) 2 ~ is the maximal power of a family of  nonempty, 
pair-wise nonisomorphic, ordered sets, each of power <. x. 

Proof A proof of the existence of such a family, each element of which has 
power at most ~, may be found in [6, pp. 156-157]. On applying Hausdorff 's 
Theorem, [9, p. 181], we see that each E;~ may be embedded in E, proving (a). 
Since card(p(E)) = 2 ~, (b) holds. [] 

THEOREM 3.1. (a) G(Ea) is a nondivisible, ordered group that is an ~ - se t  of  
power ~. (b) VA, A' E 2 ~, G(Ea) and G(Ea,) are isomorphic as ordered sets. (c) 
VA # A' E 2 ~, G(Ez) and G(Ea,) are not isomorphic as ordered groups. 

Proof Lemma 3.2, and parts (a) and (c) of Lemma 3.1 ::~ (a). (a) and Hausdorff 's 
Theorem II [9, p. 181] ~ (b). Let A # A' E 2 ~. Assume for a moment that 
there exists an isomorphism f of G(Ez) onto G(Ea,). As we saw in Section 2, f 
induces an order-preserving mapping fv of E onto itself. There we also saw that 
for each e E E the isomorphism f induces all isomorphism fv of B(G(Ex), e) onto 
B(G(E~,), f~(e)). By definition and by (1) we have the following: 

= 7. ¢ = ¢ ,  ¢ e 

B(a(E.), Z ¢--> h E.. 
Thus fv]E~ is an order-preserving map onto E~,; but this violates part (a) of 
Lemma 3.2, and thus proves (c). [] 

For all T E fo(E), let F(T):= H(G(T) ,R) , .  

COROLLARY 3.1. (a) F(E~) is a non-real closed field that is an rl~-set of  power 
x. (b) VA, A' E 2 x, F(Ez) and F(Ex,) are isomorphic as ordered additive groups. 
(c) VA # A' E 2 ~, F(Ex) and F(Ex,) are not isomorphic as ordered fields. 

Proof Parts (a) and (c) of Lemma 3.1, Lemma 3.2, and [2, 3] imply (a). (a) and 
[1] =~ (b). Let A # A t E 2 ~. Assume, for a moment that there exists an isomorphism 
f of F(E~) onto F(E~,);  then f induces an isomorphism of G(E~) onto G(E~,), 
which violates part (c) of Theorem 3.1, proving (c). [] 
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4. Examples,  Part 2 

Continuing with the notation and assumptions of Section 3, let A E 2 ~. 

For all e E E),, let Ca(e) := Q, and for all e E E \ E;~, let C~(e) := 

(CX(e))ceE is an ordered system of Archimedean ordered divisible groups. Let 
H(A) be its Hahn product. 

For all A E 2 ~, let C(A) := H(A)~. 

THEOREM 4.1. (a) C(A)/s an ordered divisible group o fpower  ~. (b) VA, A' E 2 '~, 
C(A) and C(A') are isomorphic as ordered sets. (c) VA ¢ A' E 2 ~, C(A) and C(A') 
are not isomorphic as ordered groups. 

Proof. [2, 3] implies (a). Cantor has shown [5, pp. 504-506] there exists an order- 
preserving mapping f of Q onto Q(v~). Let A ~ A' E 2 ~, and let c E C(A). Recall 
that c E Q(x/2) t .  Let a mapping F be defined as follows. 

(E;, n E . )  u ((E \ n (E \ E.))  =:.  = 

e E E~, M (E \ E:~,) ~ F(c)(e) = f (c(e)) .  

e E (E \ E~,) M E~, ~ F(c)(e) -- f - 1  (c(e)). 

F is an order-preserving mapping of C(A) onto C(A'), proving (b). Note that (Q, +, 0) 
and (Q(vr2), +, 0) are vector spaces over Q of dimensions 1 and 2 respectively; 
thus they are not isomorphic as groups. Using this we may modify the proof of 
Theorem 3.1 to establish (c). 

For all A e 2 ~, let F(A):= H ( C ( A ) , I ~ ) .  

COROLLARY 4.1. (a) F(A) is a real closed field o fpower  x. (b) VA, A' E 2 ~, F(A) 
and F(A 1) are isomorphic as ordered additive groups. (c) VA :~ A t E 2 ~, F(A) and 
F(A') are not isomorphic as ordered fields. 

Proof. [2, 3] implies (a). Part (b) of Theorem 4.1 implies (b). Part (c) of Theo- 
rem 4.1 implies (c). [] 

5. Examples ,  Part 3 

Continue with the assumptions of Sections 2 and 3. For an ordered group (G, +, 0, <), 
le tG > ° : = { x E G :  x > 0 } .  

LEMMA 5.1. Let F be an ordered field. (F, <) and (F >°, <) are isomorphic. 
Proof. Let us define an order-preserving map ¢ as follows. 
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For all z E F for which z t> 0, let $(z) := x + 1. 

For all z E F for which :~ < 0, let ¢(z) := I /(1 - z). 

¢I[0, ~ ) i s  an order-preserving map onto [1, co). 

For al lw,  z E F ,  w < z < 0 ~ 0 < - x < - w : : ¢ - I  < l - z <  1 - w : : ~  
0 < l / ( 1 - w ) < l / ( 1 - z ) < l ;  

thus ~ l ( - ~ ,  0) is an order-preserving map into (0, 1). Let y E (0, 1). Thus 1/y > 1, 
( l / y ) -  1 > 0, and x := 1 - ( l / y )  < 0. Hence 1/y = 1 - z and y = 1/(1 - x). [] 

THEOREM 5.1. There exist two ordered divisible groups that are Oa-sets which are 

isomorphic as ordered sets, but are not isomorphic as ordered groups. 

Proof. Recall (Section 3) that E is an r/a-set of power g. Since ~E is an ordered 
system of Archimedean ordered divisible groups, its Hahn product G is an ordered 

divisible group. By [2, 3] G is an r/a-set. Since E is an r/~-set, it contains an 
anti-welt-ordered subset of power ~; thus card(G) = 2 ~. Let ~ := H(G, ~).  By [2, 
3], (q~, + , . ,  0, 1, <) is a real closed field that is an r/a-set. 

Let G1 := (@, +, 0, <) and let Gz := (q~>0, ", 1, <). 

Since • is an r/a-set, so are G1 and G2. By Lemma 5.1, Gl and Gz are isomorphic 
as ordered sets. 

Assume, for a moment, that there exists an order-preserving isomorphism ~ of 
(G1, +,0,  <) onto (Ge,., 1, <). Sa E G1 >° such that 0(a) = 2 E G2. Following [10, 

p. 78], let f (x)  := ~(za), Vx E G1. f is (i) an order-preserving group isomorphism 
of G1 onto G2 such that (ii) 1 + 1/3 < f(1) < 3, showing that q) is an exponentially 
closed field [4]. By [4, Corollary 1.4], (G >°, <) and (E, <) are isomorphic. However, 
card(G >°) = card(G) = 2 ~ > n = card(E), which is absurd. [] 

COROLLARY 5.1. There exist two real closed fields that are r/~-sets which are 

isomorphic as ordered additive groups, but not as ordered fields. 

Proof. Let 

Fi := H(Gi, ~),  for i = 1, 2. 

By [2, 3], F1 and F2 are real closed fields that are r/a-sets. Since G1 and G2 are 
isomorphic as ordered sets, F1 and F2 are isomorphic as ordered additive groups. 
Since G1 and G2 are not isomorphic as ordered groups, F1 and F2 are not isomorphic 
as ordered fields. [] 
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