On η_{α} -Groups and Fields

NORMAN L. ALLING

Department of Mathematics, University of Rochester, Rochester, NY 14627, U.S.A.

and

SALMA KUHLMANN

Mathematisches Institut, Universität Heidelberg, Im Neuenheimer Feld 288, D-6900 Heidelberg, Germany

Communicated by K. Keimel

(Received: 1 November 1993; accepted: 5 March 1994)

Abstract. Let $\kappa := \aleph_{\alpha}$. The following are known: two η_{α} -sets of power κ are isomorphic. Let $\alpha > 0$. Two ordered divisible Abelian groups that are η_{α} -sets of power κ are isomorphic, two real closed fields that are η_{α} -sets of power κ are isomorphic. The following is shown: (1) there exist 2^{κ} nonisomorphic ordered Abelian groups (respectively ordered fields) that are η_{α} -sets of power κ ; (2) there exist 2^{κ} nonisomorphic ordered divisible Abelian groups (respectively real closed fields) of power κ all having the same order type; (3) there exist 2 nonisomorphic ordered divisible Abelian groups (respectively real closed fields) that are η_{α} -sets having the same order type.

Mathematics Subject Classifications (1991). Primary 06A05, 06F20, 12J15; Secondary 03C60.

Key words. η_{α} -groups and fields, non-Archimedean ordered groups and fields, model-theory, valuation theory, Hahn groups, formal power series, ordered divisible Abelian groups, real closed fields, order type as an invariant, o-minimal theories.

1. Introduction

A partially ordered set (S, <) is an ordered set if $\forall x, y \in S, x \leq y$ or $x \geq y$. Assume throughout the rest of the paper that all groups are Abelian.

Let A_1 and A_2 be subsets of an ordered set A. Let $A_1 < A_2$ if $a_1 \in A_1$ and $a_2 \in A_2 \Rightarrow a_1 < a_2$. If $A_1 < A_2$ and if the cardinality $\operatorname{card}(A_1 \cup A_2) < \aleph_{\alpha}$ implies the existence of $a \in A$ such that $A_1 < \{a\} < A_2$, Hausdorff [9, pp. 180, 181] called A an η_{α} -set. Thus A is a dense ordered set without end points $\iff A$ is an η_0 -set. Hausdorff also proved that the order type of an η_{α} -set of power \aleph_{α} is unique up to isomorphism. Let $\alpha > 0$. In 1955 Erdès, Gillman, and Henriksen [7] proved that a real closed field that is an η_{α} -set of power \aleph_{α} is determined by its order type. In 1960 the first author [1] proved the same result for ordered divisible groups.

Erdøs, Gillman, and Henriksen asked the following question [7, Section 5.1]: "Is a non-denumerable real-closed field, in particular, if it is non-archimedean characterized by its type of order as an ordered set"? One might go on to look for a complete set of invariants for a real closed field. Dense ordered sets without end points, ordered divisible groups, and real closed fields all have the following important model theoretic property: they are all o-minimal. (A structure M is *o-minimal* if every subset of it that is definable with parameters in M is a finite union of intervals of M. See [12] for definitions and properties.) Let $\kappa := \aleph_{\alpha}$ with $\alpha > 0$. o-minimal structures have many interesting properties: e.g., the following.

THEOREM 1.1. M is κ -saturated if and only if M has a κ -saturated order type.

The order type of a dense ordered set without end points, an ordered divisible group, or a real closed field, is κ -saturated if and only if it is an η_{α} -set. Thus from the uniqueness of saturated models and Theorem 1.1, one can prove that the theorems cited of Hausdorff; Erdøs, Gillman, and Henriksen; and the first author, follow immediately. In this language the question engendered by that of Erdøs, Gillman, and Henriksen translates as follows: what invariants characterize an o-minimal structure?

The search for a natural solution of this classification problem for o-minimal theories is suggested by such important model theoretic properties as the existence and uniqueness of prime models, and Vaught's conjecture (see [12] and [11] for details). However, order type often does not characterize ordered structures. Having made standard assumptions about κ in Section 3, we prove that there exist 2^{κ} pairwise nonisomorphic ordered groups (respectively ordered fields) that are η_{α} -sets of power κ , necessarily all having the same order type. These examples are not divisible (respectively not real closed) and thus not o-minimal (see [12]). An analogous result is obtained in Section 4, even under the additional hypothesis of o-minimality, but without the condition that the examples are η_{α} -sets. In Section 5, having dropped the condition that the examples are of power κ , it is shown that there exist two ordered divisible groups that are η_{α} -sets which are isomorphic as ordered sets, but not as ordered groups, and that there exist two real closed fields that are η_{α} -sets which are isomorphic as ordered additive groups, but not as ordered fields. However, the second author has proved [10] that the order type does determine a group up to isomorphism for the class of Archimedean-complete, ordered divisible groups of reverse ordinal rank.

2. Background

For x, y, z in an ordered group (G, +, 0, <), let

 $|x| := \max\{x, -x\}.$

 $x \in G \mapsto |x| \in G$ has all the expected properties.

Let $x \sim y$ if $\exists n \in \mathbb{N}$ such that $|x| \leq n|y|$ and $|y| \leq n|x|$. \sim is an equivalence relation on G. Let [G] be the set of equivalence classes of $G \mod \sim$. Let $[x] \in [G]$ such that $x \in [x]$. $[\cdot]: x \in G \mapsto [x] \in [G]$ is surjective.

Let $x \ll y$ if $\forall n \in \mathbb{N}$, n|x| < |y|.

 $x \in G \Rightarrow x \not\ll x. \ \forall x, y, z \in G, \ x \ll y, \ \text{and} \ y \ll z \Rightarrow x \ll z.$

Let $[x] < [y] \iff x \ll y$.

[G] is an ordered set, $-\infty := [0]$ being its least element. Call [·] the natural valuation of G, call [G] its value set, call $[G]^* := [G] \setminus \{-\infty\}$ its essential value set, and call the order type of $[G]^*$ the rank of G.

Let m be an order-preserving map of [G] onto an ordered set Γ ; then $v := m([\cdot])$ is a *natural valuation* of G, and Γ is a value set of G. Let $\Gamma^* := m([G]^*)$.

For all $x, y \in G$, $v(x + y) \leq \max \{v(x), v(y)\}$.

Call $C \subseteq G$ convex if $c \in C$, if $g \in G$, and if $|g| \leq |c|$ imply $g \in C$.

For all
$$\gamma \in \Gamma^*$$
 let $G^{\gamma} := \{x \in G : v(x) \leq \gamma\}$ and let $G_{\gamma} := \{x \in G : v(x) < \gamma\}$.

Let $G^{-\infty} := 0$ and let $G_{-\infty} := 0$.

 G^{γ} and G_{γ} are convex subgroups of G. $B(G, \gamma) := G^{\gamma}/G_{\gamma}$ has a unique order making it an Archimedean ordered group such that the canonical homomorphism of G^{γ} onto $B(G, \gamma)$ preserves \leq . $B(G, -\infty) = 0$, and $\gamma \in \Gamma^* \Rightarrow B(G, \gamma) \neq 0$. $(B(G, \gamma))_{\gamma \in \Gamma^*}$ is called a *skeleton* S(G) of G. Let f be an isomorphism of G onto an ordered group G'. Since

$$x \sim y \iff f(x) \sim f(y)$$
 and $x \ll y \iff f(x) \ll f(y)$,

f induces the following order-preserving surjection of value sets:

 $f_v: v(x) \in \Gamma_G \longmapsto v'(f(x)) \in \Gamma_{G'}.$

For each $\gamma \in \Gamma_G$, f induces an isomorphism f_{γ} of ordered groups as follows:

$$x + G_{\gamma} \in B(G, \gamma) \longmapsto f(x) + G'_{f_{\nu}(\gamma)} \in B(G', f_{\nu}(\gamma)).$$
(1)

Hence S(G) is an invariant of G. Let $G^* := G \setminus \{0\}$.

A family $(B(a))_{a \in A^*}$ of nonzero, Archimedean, ordered groups indexed by an ordered set A^* will be called an *ordered system of Archimedean ordered groups*. Note: S(G) is such a family. Let $(B(a))_{a \in A^*}$ be an ordered system of Archimedean ordered groups, and let Π be its Cartesian product. For $p \in \Pi$ let

 $supp(p) := \{ a \in A^* : p(a) \neq 0 \},\$

and call it the support of p.

Let $H := \{p \in \Pi: \operatorname{supp}(p) \text{ is an anti-well-ordered subset of } A^*\}.$

H is a subgroup of Π . For $h \in H^*$, let v(h) be the greatest element of $\operatorname{supp}(h)$. Let $v(0) := -\infty$. v maps *H* onto $A := A^* \cup \{-\infty\}$. Let the order on A^* be extended to *A* by stipulating that $a > -\infty$, $\forall a \in A^*$. Let *H* be given the lexicographic order. *H* is an ordered group called the *Hahn product* of $(B(a))_{a \in A^*}$.

Let $H_{\kappa} := \{h \in H : \operatorname{card}(\operatorname{supp}(h)) < \kappa\}.$

 H_{κ} is a subgroup of H. Let $v_{\kappa} := v | H_{\kappa}$. v (respectively, v_{κ}) is a natural valuation of H (respectively, H_{κ}), having essential value set A^* , and skeleton $(B(a))_{a \in A^*}$.

Let $(F, +, \cdot, 0, 1, <)$ be an ordered field. (F, +, 0, <) is an ordered group, $[\cdot]$ is its natural valuation, and [F] is its value set. Let m be an order-preserving mapping of [F] onto an ordered set Γ . $v := m([\cdot])$ is a natural valuation of (F, +, 0, <), which has Γ as its value set. Let $G := \Gamma^*$. G has a unique addition such that $v|F^*$ is a homomorphism of $(F^*, \cdot, 1, <)$ onto the ordered group (G, +, <).

Let $O := \{x \in F: v(x) \leq 0\}$, and let $M := \{x \in F: v(x) < 0\}$.

v is a valuation of F, G is its value group, O is its valuation ring, and M is the maximal ideal of O. Let ρ be a homomorphism of O having kernel M. ρ is a place of F associated with v. Let $\rho(O) := K$ be called a residue class field of v. K has a unique ordering such that ρ preserves \leq . K is an Archimedean ordered field. K and G are invariants of F. (See, e.g., [13] for details.)

Let K be an Archimedean field, and let G be an ordered group; then $(K, +, 0, <)^G$ is an ordered system of Archimedean ordered groups. Its Hahn product H is an ordered group. H_{κ} is a subgroup of H, which may also be denoted by $H(G, K)_{\kappa}$.

For all
$$x, y \in H$$
, and for all $g \in G$, let $(x \cdot y)(g) := \sum_{a+b=g} x(a)y(b)$.

Hahn [8] proved that $(H, +, \cdot, 0, 1, <)$ is an ordered field. v is a valuation of H having K as its residue class field and G as its value group. H_{κ} is a subfield of H. $v_{\kappa} := v|H_{\kappa}$ is a valuation on H_{κ} having K as its residue class field and G as its value group.

3. Examples, Part 1

ASSUMPTION 3.1. $\alpha > 0$, $\kappa := \aleph_{\alpha}$ is regular, and $\sum_{\beta < \alpha} 2^{\aleph_{\beta}} \leq \kappa$.

It is well-known (see e.g., [14]) that Assumption 3.1 is equivalent to:

 $\alpha > 0$, and there exists an η_{α} -set E of power κ .

Let \mathbb{N} denote the set of all positive integers, let \mathbb{Z} denote the ring of integers, let \mathbb{Q} denote the field of rational numbers, and let \mathbb{R} denote the field of real numbers. \mathbb{R}^E is an ordered system of Archimedean ordered divisible groups. Let H be its Hahn product, and let v be the natural valuation of H having value set $\Gamma := E \cup \{-\infty\}$. (See Section 2 for definitions.)

For all
$$T \in \wp(E)$$
, let $G(T) := \{h \in H_{\kappa} \colon h(T) \subseteq \mathbb{Z}\}$.

LEMMA 3.1. (a) G(T) is a subgroup of H_κ that is an η_α-set of power κ.
(b) G(Ø) = H_κ, and thus is divisible. (c) T ≠ Ø ⇒ G(T) is not divisible.
Proof. [2, 3] ⇒ (a). (b) and (c) are obvious.

LEMMA 3.2. (a) There exists a family $\{E_{\lambda}: \lambda \in 2^{\kappa}\}$ of nonempty, pair-wise nonisomorphic, ordered subsets of E. (b) 2^{κ} is the maximal power of a family of nonempty, pair-wise nonisomorphic, ordered sets, each of power $\leq \kappa$.

Proof. A proof of the existence of such a family, each element of which has power at most κ , may be found in [6, pp. 156–157]. On applying Hausdorff's Theorem, [9, p. 181], we see that each E_{λ} may be embedded in E, proving (a). Since card($\wp(E)$) = 2^{κ} , (b) holds.

THEOREM 3.1. (a) $G(E_{\lambda})$ is a nondivisible, ordered group that is an η_{α} -set of power κ . (b) $\forall \lambda, \lambda' \in 2^{\kappa}$, $G(E_{\lambda})$ and $G(E_{\lambda'})$ are isomorphic as ordered sets. (c) $\forall \lambda \neq \lambda' \in 2^{\kappa}$, $G(E_{\lambda})$ and $G(E_{\lambda'})$ are not isomorphic as ordered groups.

Proof. Lemma 3.2, and parts (a) and (c) of Lemma 3.1 \Rightarrow (a). (a) and Hausdorff's Theorem II [9, p. 181] \Rightarrow (b). Let $\lambda \neq \lambda' \in 2^{\kappa}$. Assume for a moment that there exists an isomorphism f of $G(E_{\lambda})$ onto $G(E_{\lambda'})$. As we saw in Section 2, f induces an order-preserving mapping f_v of E onto itself. There we also saw that for each $e \in E$ the isomorphism f induces an isomorphism f_v of $B(G(E_{\lambda}), e)$ onto $B(G(E_{\lambda'}), f_v(e))$. By definition and by (1) we have the following:

 $B(G(E_{\lambda}), e) \simeq \mathbb{Z} \iff e \in E_{\lambda}.$ $B(G(E_{\lambda'}), f_{\nu}(e)) \simeq \mathbb{Z} \iff f_{\nu}(e) \in E_{\lambda'}.$

Thus $f_v|E_\lambda$ is an order-preserving map onto $E_{\lambda'}$; but this violates part (a) of Lemma 3.2, and thus proves (c).

For all
$$T \in \wp(E)$$
, let $F(T) := H(G(T), \mathbb{R})_{\kappa}$.

COROLLARY 3.1. (a) $F(E_{\lambda})$ is a non-real closed field that is an η_{α} -set of power κ . (b) $\forall \lambda, \lambda' \in 2^{\kappa}$, $F(E_{\lambda})$ and $F(E_{\lambda'})$ are isomorphic as ordered additive groups. (c) $\forall \lambda \neq \lambda' \in 2^{\kappa}$, $F(E_{\lambda})$ and $F(E_{\lambda'})$ are not isomorphic as ordered fields.

Proof. Parts (a) and (c) of Lemma 3.1, Lemma 3.2, and [2, 3] imply (a). (a) and $[1] \Rightarrow$ (b). Let $\lambda \neq \lambda' \in 2^{\kappa}$. Assume, for a moment that there exists an isomorphism f of $F(E_{\lambda})$ onto $F(E_{\lambda'})$; then f induces an isomorphism of $G(E_{\lambda})$ onto $G(E_{\lambda'})$, which violates part (c) of Theorem 3.1, proving (c).

4. Examples, Part 2

Continuing with the notation and assumptions of Section 3, let $\lambda \in 2^{\kappa}$.

For all $e \in E_{\lambda}$, let $C^{\lambda}(e) := \mathbb{Q}$, and for all $e \in E \setminus E_{\lambda}$, let $C^{\lambda}(e) := \mathbb{Q}(\sqrt{2})$.

 $(C^{\lambda}(e))_{e \in E}$ is an ordered system of Archimedean ordered divisible groups. Let $H(\lambda)$ be its Hahn product.

For all $\lambda \in 2^{\kappa}$, let $C(\lambda) := H(\lambda)_{\kappa}$.

THEOREM 4.1. (a) $C(\lambda)$ is an ordered divisible group of power κ . (b) $\forall \lambda, \lambda' \in 2^{\kappa}$, $C(\lambda)$ and $C(\lambda')$ are isomorphic as ordered sets. (c) $\forall \lambda \neq \lambda' \in 2^{\kappa}$, $C(\lambda)$ and $C(\lambda')$ are not isomorphic as ordered groups.

Proof. [2, 3] implies (a). Cantor has shown [5, pp. 504–506] there exists an orderpreserving mapping f of \mathbb{Q} onto $\mathbb{Q}(\sqrt{2})$. Let $\lambda \neq \lambda' \in 2^{\kappa}$, and let $c \in C(\lambda)$. Recall that $c \in \mathbb{Q}(\sqrt{2})^{E}$. Let a mapping F be defined as follows.

$$e \in (E_{\lambda} \cap E_{\lambda'}) \cup ((E \setminus E_{\lambda}) \cap (E \setminus E_{\lambda'})) \Longrightarrow F(c)(e) = c(e).$$
$$e \in E_{\lambda} \cap (E \setminus E_{\lambda'}) \Longrightarrow F(c)(e) = f(c(e)).$$
$$e \in (E \setminus E_{\lambda}) \cap E_{\lambda'} \Longrightarrow F(c)(e) = f^{-1}(c(e)).$$

F is an order-preserving mapping of $C(\lambda)$ onto $C(\lambda')$, proving (b). Note that $(\mathbb{Q}, +, 0)$ and $(\mathbb{Q}(\sqrt{2}), +, 0)$ are vector spaces over \mathbb{Q} of dimensions 1 and 2 respectively; thus they are not isomorphic as groups. Using this we may modify the proof of Theorem 3.1 to establish (c).

For all
$$\lambda \in 2^{\kappa}$$
, let $F(\lambda) := H(C(\lambda), \mathbb{R})_{\kappa}$.

COROLLARY 4.1. (a) $F(\lambda)$ is a real closed field of power κ . (b) $\forall \lambda, \lambda' \in 2^{\kappa}$, $F(\lambda)$ and $F(\lambda')$ are isomorphic as ordered additive groups. (c) $\forall \lambda \neq \lambda' \in 2^{\kappa}$, $F(\lambda)$ and $F(\lambda')$ are not isomorphic as ordered fields.

Proof. [2, 3] implies (a). Part (b) of Theorem 4.1 implies (b). Part (c) of Theorem 4.1 implies (c). \Box

5. Examples, Part 3

Continue with the assumptions of Sections 2 and 3. For an ordered group (G, +, 0, <), let $G^{>0} := \{x \in G: x > 0\}.$

LEMMA 5.1. Let F be an ordered field. (F, <) and $(F^{>0}, <)$ are isomorphic. Proof. Let us define an order-preserving map ϕ as follows. For all $x \in F$ for which $x \ge 0$, let $\phi(x) := x + 1$.

For all $x \in F$ for which x < 0, let $\phi(x) := 1/(1-x)$.

 $\phi | [0, \infty)$ is an order-preserving map onto $[1, \infty)$.

For all $w, x \in F$, $w < x < 0 \Rightarrow 0 < -x < -w \Rightarrow 1 < 1 - x < 1 - w \Rightarrow 0 < 1/(1 - w) < 1/(1 - x) < 1$;

thus $\phi|(-\infty, 0)$ is an order-preserving map into (0, 1). Let $y \in (0, 1)$. Thus 1/y > 1, (1/y) - 1 > 0, and x := 1 - (1/y) < 0. Hence 1/y = 1 - x and y = 1/(1 - x). \Box

THEOREM 5.1. There exist two ordered divisible groups that are η_{α} -sets which are isomorphic as ordered sets, but are not isomorphic as ordered groups.

Proof. Recall (Section 3) that E is an η_{α} -set of power κ . Since \mathbb{R}^E is an ordered system of Archimedean ordered divisible groups, its Hahn product G is an ordered divisible group. By [2, 3] G is an η_{α} -set. Since E is an η_{α} -set, it contains an anti-well-ordered subset of power κ ; thus $\operatorname{card}(G) = 2^{\kappa}$. Let $\Phi := H(G, \mathbb{R})$. By [2, 3], $(\Phi, +, \cdot, 0, 1, <)$ is a real closed field that is an η_{α} -set.

Let $G_1 := (\Phi, +, 0, <)$ and let $G_2 := (\Phi^{>0}, \cdot, 1, <)$.

Since Φ is an η_{α} -set, so are G_1 and G_2 . By Lemma 5.1, G_1 and G_2 are isomorphic as ordered sets.

Assume, for a moment, that there exists an order-preserving isomorphism θ of $(G_1, +, 0, <)$ onto $(G_2, \cdot, 1, <)$. $\exists a \in G_1^{>0}$ such that $\theta(a) = 2 \in G_2$. Following [10, p. 78], let $f(x) := \theta(xa), \forall x \in G_1$. f is (i) an order-preserving group isomorphism of G_1 onto G_2 such that (ii) 1 + 1/3 < f(1) < 3, showing that Φ is an exponentially closed field [4]. By [4, Corollary 1.4], $(G^{>0}, <)$ and (E, <) are isomorphic. However, $\operatorname{card}(G^{>0}) = \operatorname{card}(G) = 2^{\kappa} > \kappa = \operatorname{card}(E)$, which is absurd. \Box

COROLLARY 5.1. There exist two real closed fields that are η_{α} -sets which are isomorphic as ordered additive groups, but not as ordered fields.

Proof. Let

$$F_i := H(G_i, \mathbb{R}), \quad \text{for } i = 1, 2.$$

By [2, 3], F_1 and F_2 are real closed fields that are η_{α} -sets. Since G_1 and G_2 are isomorphic as ordered sets, F_1 and F_2 are isomorphic as ordered additive groups. Since G_1 and G_2 are not isomorphic as ordered groups, F_1 and F_2 are not isomorphic as ordered fields.

References

- 1. N. L. Alling (1960) On ordered divisible groups, Trans. Amer. Math. Soc. 94, 498-514.
- N. L. Alling (1961) A characterization of Abelian η_α-groups in terms of their natural valuation, Proc. Nat. Acad. Sci. (U.S.A.) 47, 711-713.
- 3. N. L. Alling (1962) On the existence of real-closed fields that are η_{α} -sets of power \aleph_{α} , Trans. Amer. Math. Soc. 103, 341-352.
- 4. N. L. Alling (1962) On exponentially closed fields, Proc. Amer. Math. Soc. 13, 706-711.
- 5. G. Cantor (1895) Beiträge zur Begründung der transfiniten Mengenlehre, Part I, Math. Ann. 46, 418-512.
- 6. C. C. Chang and H. J. Keisler (1973) Model Theory, North-Holland, Amsterdam.
- P. Erdås, L. Gillman and M. Henriksen (1955) An isomorphism theorem for real-closed fields, Ann. of Math. 61, 542-554.
- 8. H. Hahn (1907) Über die nichtarchimedischen Größensysteme, S.-B. Akad. Wiss. Wien. math.naturw. Kl. Abt. IIa, 116, 601-655.
- 9. F. Hausdorff (1914) Grundzüge der Mengenlehre, Leipzig, Verlag von Veit.
- 10. S. Kuhlmann (1991) Quelques propriétés des espaces vectoriels valués en théorie des modèles, Doctoral Dissertation, Université Paris 7.
- 11. L. Mayer (1985) Vaught's Conjecture for o-Minimal Theories, Dissertation, Yale University.
- 12. A. Pillay and C. Steinhorn (1986) Definable sets in ordered structures I, Trans. Amer. Math. Soc. 259, 565-592.
- 13. S. Prieß-Crampe (1983) Angeordnete Strukturen: Gruppen, Körper, projective Ebenen, Springer-Verlag, Berlin.
- 14. J. G. Rosentein (1982) Linear Orderings, Academic Press, New York.