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Abstract

We reveal some important geometric aspects related to non-convex optimization of sparse polynomials.
The main result, a Positivstellensatz on the fibre product of real algebraic affine varieties, is iterated to
a comprehensive class of projective limits of such varieties. This framework includes as necessary ingredi-
ents recent works on the multivariate moment problem, disintegration and projective limits of probability
measures and basic techniques of the theory of locally convex vector spaces. A variety of applications
illustrate the versatility of this novel geometric approach to polynomial optimization.
© 2008 Elsevier Masson SAS. All rights reserved.

Résumé

Nous dévoilons quelques aspects géométriques importants reliés a l’optimisation non-convexe de poly-
nômes “sparse” (i.e. qui satisfont certaines conditions de séparation des variables dans leurs monômes). Le
résultat principal, un Positivstellensatz pour le produit fibré de variétées algébriques affines, est étendu aux
classes de limites projectives de telles variétées. Cette approche utilise des ingrédients nécessaires qui se
trouvent dans les travaux récents sur le problème des moments en plusieurs variables, la disintégration et
limite projective de mesures de probabilités, ainsi que quelques techniques de base de la théorie des espaces
vectoriels localement convexes. Une variété d’applications illustre la richesse de cette nouvelle approche
géométrique à l’optimisation polynomiale.
© 2008 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The ubiquitous duality between ideals and algebraic varieties is replaced in semi-algebraic
geometry by a duality between preorders, or quadratic modules in a ring (see the preliminaries
for the exact definitions) and their positivity sets. This is already a non-trivial departure from
classical algebraic geometry, well studied and understood only in the last decades with tools from
real algebra, logic and functional analysis, see [26] for a recent, updated introduction. Significant
applications to polynomial optimization have recently emerged from such abstract studies in real
algebraic geometry, see for instance the survey [10].

Inspired by some recent, far reaching results in the optimization of polynomials with a sparse
pattern in their coefficients, advocated by Kojima, Lasserre and their collaborators, we propose
in this article a general framework for Striktpositivstellensätze on convex cones which are more
general than the well studied preorders or quadratic modules. Our approach is based on the
following geometric construction:

Let fi :Xi −→ Y , i = 1,2, be two morphisms of real algebraic, affine varieties, and let
X1 ×Y X2 be the (reduced) fibre product, with projection maps ui :X1 ×Y X2 −→ Xi . Given
convex cones Ci ⊂ R[Xi] with positivity sets K(Ci) ⊂ Xi , we provide algebraic certificates for
elements of u∗

1R[X1] + u∗
2R[X2] to be positive on u−1

1 K(C1) ∩ u−1
2 K(C2).

By iterating this construction over a certain class of oriented graphs we incorporate in our
geometric framework the main results circulating in optimization theory [13,15,20,21,23,24,32]
and provide new applications, for instance to global optimization on unbounded sets.

The present paper unifies and extends in a natural way the recent results of the first au-
thor [5,17,18] and some older observations and methods due to Schmüdgen [30] and the second
author [27].

Our proofs use a separation of convex sets by linear functionals. And when dealing with func-
tionals which are non-negative on convex cones of squares of polynomials, representing them
by positive measures is a most desired objective. Thus, via this avenue, we are led to disintegra-
tion phenomena and existence of projective limits of probability measures. The existence results
(some of them classical, such as Kolmogorov–Bochner–Prokhorov Theorem on the existence of
projective limits of probability measures) play a key, complementary role to our geometric study.

In this way, in particular, we can treat with the same techniques holomorphic functions of an
infinity of variables, or positivity of polynomials on non-semi-algebraic sets.

The last part contains an abundance of examples, some of them dealing with classical fi-
bre products, others with unbounded supporting sets of positivity, others with group actions or
trigonometric polynomials. We have not touched in this article, but plan to do it in a future one,
the natural and very possible extension to hermitian sums of squares and several complex vari-
ables.

The rather lengthy, inhomogeneous but necessary preliminaries make difficult a linear reading
of this article. We propose the reader to start with the section containing the main results and fill
the needed information with preliminaries in the way. However, among the latter, there are some
results of independent interest, such as Theorem 3.1, which can be regarded as a truncated version
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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of a classical theorem of Haviland and as a generalization of a theorem of Tchakaloff, see for
instance [28] for details.

2. Preliminaries

2.1. Quadratic modules and Positivstellensätze

Let A be a commutative ring with 1. For simplicity we assume that A contains the field of
rational numbers. A quadratic module Q ⊂ A is a subset of A such that Q + Q ⊂ Q, 1 ∈ Q

and a2Q ⊂ Q for all a ∈ A. We denote by Q(M;A) the quadratic module generated in A by
the set M . That is Q(M;A) is the smallest subset of A which is closed under addition and
multiplication by squares a2, a ∈ A, containing M and the unit 1 ∈ A. If M is finite, we say
that the quadratic module is finitely generated. A quadratic module which is also closed under
multiplication is called a quadratic preordering.

In the terminology used throughout this note, a real algebraic, affine variety X ⊂ R
d is the

common zero set of a finite set of polynomials, and the algebra of regular functions on X is
A = R[X] = R[x1, . . . , xd ]/I (X), where I (X) is the radical ideal associated to X. The non-
negativity set of a subset S ⊂ R[X] is K(S) = {x ∈ X; f (x) � 0, f ∈ S}. The duality between
finitely generated quadratic modules and non-negativity sets plays a similar role in semi-algebraic
geometry to the classical pairing between ideals and algebraic varieties, see [26] for details.
A quadratic module Q ⊂ R[X] is archimedean if for every element f ∈ R[X] there exists a pos-
itive scalar α such that 1 +αf ∈ Q. It is easy to see that the non-negativity set of an archimedean
quadratic module is always compact.

The following Striktpositivstellensatz has attracted in the last decade a lot of attention from
practitioners of polynomial optimization:

Theorem 2.1. Let Q ⊂ R[x1, . . . , xd ] be an archimedean quadratic module and assume that
a polynomial f is positive on K(Q). Then f ∈ Q.

The above fact was discovered by the second author [27], generalizing Schmüdgen’s Strikt-
positivstellensatz [30] for the finitely generated preordering associated to a compact non-
negativity set.

It is the aim of this present article to extend the above Striktpositivstellensatz to more general
convex cones of polynomials defined on real algebraic varieties. Already several extensions in
this direction are known [17–19,25,31], but, as explained in the introduction, the new impetus on
decompositions of sparse polynomials serves as a motivation for our work.

2.2. Fibre products of affine varieties

Let X1, X2, Y be affine real varieties, endowed with the reduced structures, and let
fi :Xi −→ Y , i = 1,2, be morphisms. The (reduced) fibre product X1 ×Y X2 is the affine sub-
variety of X1 × X2 consisting of those pairs (x1, x2) ∈ X1 × X2 with f1(x1) = f2(x2). The
structural ring is the reduced of R[X1] ⊗R[Y ] R[X2]. The morphisms ui :X1 ×Y X2 −→ Xi ,
i = 1,2, induced by the projections on the two factors close the diagram:
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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X1 ×Y X2 X1

X2 Y

The fibre product can also be defined for schemes or more general bundles (known sometimes
as the Whitney sum) and it always has a natural universality property, see for more details [9,
Theorem 3.3] and [11, §1.4].

The main results of this article deal with regular functions defined on affine algebraic varieties
obtained by repeated operations of fibre products. To put our constructions into a known setting
we recall below some terminology related to projective limits (or sometimes called inverse limits)
of varieties, or more general, topological spaces.

Let I be a non-empty set, endowed with a partial order relation i � j . A projective system
of algebraic varieties indexed over I consists of a family of varieties (affine in our case) Xi ,
i ∈ I , and morphisms fij :Xj −→ Xi defined whenever i � j , and satisfying the compatibility
condition fik = fijfjk if i � j � k. The topological projective limit X = proj.lim(Xi, fij ) is the
universal object endowed with morphisms fi :X −→ Xi satisfying the compatibility conditions
fi = fijfj , i � j . See for instance [4, §6]. A directed projective system carries the additional
assumption on the index set that for every pair i, j ∈ I there exists k ∈ I satisfying i � k and
j � k. An oriented graph is canonically associated to the ordered set (I,�): its vertices are
labelled by I and its arrows correspond to the order relation.

The fibre product is the projective limit of two arrows converging to the same target:

X1
f1−→ Y

f2←− X2.

When iterating this construction we obtain varieties of the form( · · · ((X1 ×Y1 X2) ×Y2 X3
) ×Y3 · · · ×Yn Xn+1.

The associated ordered sets belong to the following category.

Definition 1. Let R be the class of partially ordered sets (I,�) inductively constructed according
to the following rules:

(R0) {α1, α2, β; β � α1, β � α2} ∈R;
(R1) (I,�) ∈R⇒ (I ∪ {α,β}; ∃!i(β) ∈ I, i(β) � β, α � β) ∈ R.

We do not exclude in the second axiom i(β) = β , but we ask α to be an external element of I .
The graph

∗ −→ ∗ ←− ∗ −→ ∗ ←− · · · −→ ∗
is an example of an ordered set belonging to R.

2.3. Projective limits of positive measures

The proofs of the main results below use a duality argument. Since positive measures repre-
sent positive linear functionals, separating the polynomials, we will need certain constructions
of projective limits of positive measures. Fortunately these constructions were performed and
well understood a long time ago, due to applications to probability theory. We simply state the
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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technical results we need. For more details and a general view of the probabilistic aspects we
refer to the monographs by Bourbaki [4] and Bochner [3].

Lemma 1. Let Z = X1 ×Y X2 be a reduced fibre product of affine, real algebraic varieties, with
structural maps fi :Xi −→ Y , ui :Z −→ Xi , i = 1,2. Let μi be probability measures on Xi ,
i = 1,2, respectively, satisfying (f1)∗μ1 = (f2)∗μ2.

If the restricted maps fi : suppμi −→ Y , are proper, then there exists a probability measure μ

on Z satisfying (ui)∗μ = μi , i = 1,2, and with suppμ ⊂ [u−1
1 suppμ1] ∩ [u−1

2 suppμ2].

Proof. A classical disintegration of measures theorem (see [4, Proposition IX.2.13]) applies to
both measures μi and gives:∫

hi dμi =
∫
Y

dσ (y)

∫

f −1
i {y}

hi(t) dτ i
y(t), hi ∈ R[Xi], i = 1,2,

where σ is a positive measure on Y and τ i
y are positive measures on the fibres f −1

i {y}.
We define then∫

Z

hdμ =
∫
Y

dσ (y)

∫

f −1
1 {y}×f −1

2 {y}

hdτ 1
y (t) ⊗ dτ 2

y (t).

By its very construction μ has push-forwards via the maps ui to μi , and its support satisfies
the inclusion in the statement. �

In case X1 = X′
1 × Y , X2 = X′

2 × Y are affine spaces and f1, f2 are the projections onto Y

maps, the above lemma provides the construction of a probability measure μ on X′
1 × Y × X′

2,
given its marginals on X1 and X2, see for instance [6].

There is a variety of existence theorems for infinite projective limits of probability measures.
They require in general a directed inverse system, and some additional compactness assumptions
on the structural maps (the so-called Prokhorov’s condition). We state, for our aims, a couple of
general results in this direction, see again for details [4].

Theorem 2.2. Let (Xi, fij ) be a directed projective system of topological spaces, and let μi be
positive, finite measures on Xi , compatible with the structural maps: (fij )∗μj = μi . Assume
that, either

(a) the index set (I,�) has a countable cofinal subset, or
(b) suppμi is compact for all i.

Then there exists a finite positive measure μ on proj.lim(Xi, fij ) satisfying (fi)∗μ = μi ,
i ∈ I .

In the case of a countable product of probability spaces we recover in the above statement
a classical theorem of Kolmogorov–Bochner asserting the existence of a probability measure on
the infinite product space, with prescribed marginals.
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001



ARTICLE IN PRESS BULSCI:2290
JID:BULSCI AID:2290 /FLA [m1+; v 1.95; Prn:28/07/2008; 11:58] P.6 (1-20)

6 S. Kuhlmann, M. Putinar / Bull. Sci. math. ••• (••••) •••–•••
2.4. Sparse polynomials and chordal graphs

Let R[x1, . . . , xd ] be the polynomial ring in d variables, and let {I1, I2, . . . , Ik} be a finite
covering of the set of indices I = {1,2, . . . , d}. The polynomial ring in the variables {xl; l ∈ Ij }
will be denoted in short R[x(Ij )] and the corresponding affine space by R

Ij . The main question
considered in polynomial optimization was to find certificates of positivity for a (sparse) element

f ∈ R
[
x(I1)

] + · · · + R
[
x(Ik)

]
subject to the conditions(∀δ ∈ Δ, gδ(x) � 0

) ⇒ f (x) > 0,

where Δ is a finite set, each gδ ∈ R[Iφ(δ)] for a function φ :Δ −→ {1, . . . , k}. Kojima and collab-
orators rightly realized that the above optimization problem can be put and relaxed in dual form,
where it naturally leads to consider positive extensions of partially given multivariate moment
matrices, cf. [7,15,16,23,32], and for a slightly different, recent parallel study see also [20]. In its
turn, the matrix completion problem with constraints was thoroughly studied a few decades ago,
see [12].

This positive matrix completion approach to optimization of sparse polynomials imposes
a necessary and sufficient condition on the incidence graph attached to the sets of variables
{I1, I2, . . . , Ik} known as the chordal property, see for details [23] and for general theory [2,12].
The algorithmic aspects and computational complexity of grouping the variables into subsets
satisfying the chordal property is analyzed in [23,32] and we do not touch this territory. We
only need the observation that, a covering {I1, . . . , Ik} satisfying the chordal property can be
rearranged so that, for all j , 2 � j � k, there exists k(j) < j such that

Ij ∩ (I1 ∪ I2 ∪ · · · ∪ Ij−1) ⊂ Ik(j). (1)

This condition is known as the running intersection property. The relevance of this property for
our work is summarized in the following obvious observation.

Proposition 1. Let {I1, . . . , Ik} be a covering of the set of indices I = {1,2, . . . , d} satisfying the
running intersection property (1). Then the partially ordered set underlying the projective system
of affine spaces and projection maps

R
Ik(j) −→ R

Ik(j)∩Ij ←− R
Ij , 2 � j � k,

belongs to the class R.

3. A general framework for algebraic certificates of positivity

In this section we recall some key concepts from the recent works of the first author [17,18].
Specifically, let X ⊂ R

n be a real algebraic, affine variety, endowed with its reduced algebra
R[X] = R[x1, . . . , xn]/I (X) of regular functions. Let Rd [X] be the filtration induced by the de-
gree: p ∈ Rd [X] if there exists P ∈ R[An], degP � d and p −P ∈ I (X). For a subset S ⊂ R[X]
we denote

Sd = S ∩ Rd [X].
When needed to make the distinction, we set A

n = R
n and we refer to it as the real affine

space of dimension n. Recall that for a subset C ⊂ R[X] we define its positivity set as

K(C) = {
x ∈ X; f (x) � 0, f ∈ C

}
.

Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
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Definition 2. Let C ⊂ R[X] be a convex cone, and let V be the linear span of C in R[X]. We say
that C satisfies:

(MP) (the moment property) if every linear functional L ∈ V ′ which is non-negative on C is
represented by a positive Borel measure supported on X;

(SMP) (the strong moment property) if every linear functional L ∈ V ′ which is non-negative
on C is represented by a positive Borel measure supported on K(C);
(†) if f ∈ V , f |K(C) � 0, then for every ε > 0, f + ε ∈ C;
(‡) if f ∈ V , f |K(C) � 0, then there exists q ∈ C, such that, for every ε > 0, f +εq ∈ C.

In the presence of a convex cone as above, we can analogously define a graded set of its
closures:

Clin = {
f ∈ V ; L ∈ V ′, L|C � 0 ⇒ L(f ) � 0

}
,

C† = {f ∈ V ; ε > 0 ⇒ f + ε ∈ C},
and

C‡ = {f ∈ V ; ∃q ∈ C, ε > 0 ⇒ f + εq ∈ C}.
By its very definition, Clin is the closure of C in the finest locally convex topology carried

by V , that is that induced by the Euclidean norms of any finite-dimensional subspace of V .
We do not discuss below at length the implications among the above conditions, or contain-

ments of the respective closures of C, simply referring to [17,18] for full details in this direction.
Instead, we focus on a couple of remarks directly related to the decomposition of sparse polyno-
mials phenomena.

Lemma 2. Let X be an affine, real algebraic variety, and let C ⊂ R[X] be a convex cone with V

its linear span. Assume that for every positive integer d ,

intCd �= ∅. (2)

Then

C(‡) =
∞⋃

d=1

Cd,

where both the interior and closure is taken in the Euclidean topology of Vd .

Proof. The proof is very similar to that of Proposition 1.3 in [17]. Namely, if f ∈ C(‡), then
f = limε→0(f + εq) ∈ ⋃∞

d=1 Cd . The other way around, if f ∈ Cd , choose q ∈ intCd , so that
the straight line segment joining f to q lies in Cd . �

All quadratic modules or preorders with the archimedean property with respect to the al-
gebra R[An] satisfy property (‡) (and in fact (†)), but there are interesting examples of non-
archimedean cones with this property, as we shall see on some examples contained in the last
section.

Let X ⊂ A
n be an affine, real algebraic variety, and let K ⊂ X be a closed subset of X.

We call after Reznick K full, if it is a uniqueness set in the algebra R[X], that is p ∈ R[X],

Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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p|K = 0 ⇒ p = 0. We denote by P+
d (K) = {p ∈ Rd [X]; p|K � 0}. For d even, these are convex

cones with non-empty interior in Rd [X] because, for M large,

2p(x) = (
M‖x‖d + p(x)

) − (
M‖x‖d − p(x)

)
,

whence P+
d (K) −P+

d (K) = Rd [X].
The next theorem represents a version of Haviland Theorem for the truncated moment prob-

lem, and in the same time it is a variation to Tchakaloff Theorem.

Theorem 3.1. Let X be a real algebraic variety, and let K ⊂ X be a closed, full subset. Fix
an integer d and consider a linear functional L ∈ Rd [X]′ satisfying L|P+

d (K) � 0, (f |K � 0,

L(f ) = 0) ⇒ f = 0. Then there exists a finite atomic measure supported by K representing L.

Proof. We follow the ideas presented in [1], in the new proof of Tchakaloff Theorem.
Assume that d = 1 and consider the polar cone

P+
1 (K)◦ = {


 ∈ R1[X]′; 
|P+
1 (K) � 0

}
.

By its definition P+
1 (K) is a closed convex cone in R1[X], so it coincides with its bi-polar (see

for instance [29]). Thus the assumption (f |K � 0, L(f ) = 0) ⇒ f = 0 means that L is not in
the boundary of P+

1 (K)◦, that is L ∈ intP+
1 (K)◦. By Minkowski’s separation theorem,

P+
1 (K)◦ = co{δx; x ∈ K},

where δa stands for the Dirac measure at a. Consequently

L ∈ co{δx; x ∈ K},
which is the conclusion in the statement.

For d > 1 we list polynomial representatives {1, φ1, . . . , φN } of the space Rd [X] and consider
the Veronese type (proper) imbedding

(1, φ1, . . . , φN) :X −→ A
N+1.

Then we apply the case d = 1 to the image of this map and the lift of the functional L there. �
For a slightly different proof and explanation of the existence of such cubature formulas

see [28].

4. Main results

Let V be a real vector space and let C be a convex cone in V . We say that an element ξ

belongs to the algebraic interior, in short ξ ∈ alg.intC, if for every f ∈ V there exists a positive
constant λ such that ξ + λf ∈ C. The following separation lemma (originally proved indepen-
dently by Eidelheit, Kakutani and Krein) will be needed at a key technical point in our proofs.

Lemma 3. Let C ⊂ V be a convex cone in a real vector space V . Assume that ξ ∈ alg.intC and
that g /∈ C. Then there exists a linear functional L ∈ V ′, such that

L(g) � 0 � L(c), c ∈ C; L(ξ) = 1.

For a proof (a variation of the Hahn–Banach argument) see [14].
At this stage we are ready to assemble all ingredients into our main lemma.
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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Lemma 4 (Basic Lemma). Let X1 ×Y X2 be the reduced fibre product of affine, real algebraic
varieties, with structural maps fi :Xi −→ Y , ui :Z −→ Xi , i = 1,2.

Let Ci ⊂ R[Xi] be convex cones with the (SMP) and 1 ∈ alg.intCi , with respect to the linear
subspace Vi generated by Ci , i = 1,2, respectively, and such that the maps fi :K(Ci) −→ Y are
proper.

Assume that p ∈ u∗
1V1 +u∗

2V2 is positive on u−1
1 K(C1)∩u−1

2 K(C2). Then p ∈ u∗
1C1 +u∗

2C2.

Proof. Assume by contradiction that p /∈ u∗
1C1 + u∗

2C2. Since 1 ∈ alg.int[u∗
1C1 + u∗

2C2], the
separation lemma applies, and gives a linear functional L ∈ [u∗

1V1 + u∗
2V2]′, non-negative on

u∗
1C1 + u∗

2C2 and satisfying L(p) � 0 < L(1) = 1. Let Li(f ) = L(u∗
i f ), f ∈ Vi , i = 1,2. By

assumption, Li is represented by a probability measure μi , supported by the positivity set K(Ci).
Moreover

(f1)∗μ1 = (f2)∗μ2,

since by definition:∫
g d(f1)∗μ1 = L

(
u∗

1f
∗
1 g

) = L
(
u∗

2f
∗
2 g

) =
∫

g d(f2)∗μ2.

Since the restricted maps fi :K(Ci) −→ Y are proper, Lemma 1 yields a positive measure μ sup-
ported by the set S = u−1

1 K(C1) ∩ u−1
2 K(C2), which represents the functional L. Consequently,

L(p) =
∫
S

p dμ > 0,

a contradiction. �
The conditions in the statement are met if Ci ⊂ R[Xi] are quadratic modules with the

archimedean property. Indeed, in this case 1 ∈ alg.intCi and K(Ci) are compact sets.
A repeated use of the basic lemma leads to our first main result. Without aiming at full gener-

ality, we state it in the case of archimedean quadratic modules. Variations on the same theme are
straightforward.

Theorem 4.1. Let (Xi, fij ) be a finite projective system of real algebraic varieties, with the
ordered index set belonging to the class R. Assume that Qi ⊂ R[Xi] are archimedean quadratic
modules satisfying (fij )

∗Qi ⊂ Qj for i � j .
An element p ∈ ∑

i f
∗
i R[Xi] which is positive on

⋂
i f

−1
i K(Qi) belongs to

∑
i f

∗
i Qi .

The coherence condition (fij )
∗Qi ⊂ Qj implies fijK(Qj ) ⊂ K(Qi), that is we can actually

work with the projective system (K(Qi), fij ) of compact spaces.
When dealing with unbounded positivity sets, the assumption 1 ∈ alg.intCi is way too strong.

Instead, we propose the following variation of the Basic Lemma.

Lemma 5. Let X1 ×Y X2 be the fibre product of affine, real algebraic varieties. Let Ci ⊂ R[Xi]
be convex cones with

int[Ci]d �= ∅ in [Vi]d , d � 1,
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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and satisfying the (‡) property, with respect to the vector subspaces Vi ⊂ R[Xi], i = 1,2.
Assume that the positivity sets K(Ci) are full in Xi , and that the maps fi :K(Ci) −→ Y are
proper. Let f ∈ u∗

1V1 + u∗
2V2 be non-negative on u−1

1 K(C1) ∩ u−1
2 K(C2). Then there exists

q ∈ u∗
1C1 + u∗

2C2, such that, for all ε > 0, f + εq ∈ u∗
1C1 + u∗

2C2.

Proof. By a simple variation in the proof of Lemma 2 we choose a large enough positive inte-
ger d , and assume by contradiction that

f /∈ [(
u∗

1C1
)
d

+ (
u∗

2C2
)
d

]
.

Note that the maps ui are induced by projections, so (ui)
∗f does not alter the degree of f , and

in particular, if int[Ci]d �= ∅ with respect to [Vi]d , d � 1, then int[(u∗
1C1)d + (u∗

2C2)d ] �= ∅, as
a subspace of [u∗

1V1 + u∗
2V2]d .

By Minkowski’s separation theorem, there exists a linear functional M ∈ [u∗
1V1 + u∗

2V2]′ sat-
isfying

M(f ) < 0 � M|(u∗
1C1)d+(u∗

2C2)d .

Since the positivity sets K(Ci) are full in Xi , respectively, we can choose positive measures σi

(of very small total mass), supported by u−1
i K(Ci), such that the functional

L(g) = M(g) +
∫

g
[
(u1)∗ dσ1 + (u2)∗ dσ2

]
still satisfies

L(f ) < 0 � L|(u∗
1C1)d+(u∗

2C2)d

and in addition,

g|
u−1

1 K(C1)∩u−1
2 K(C2)

� 0, L(g) = 0 ⇒ g = 0.

According to Theorem 3.1 there are finite atomic, positive measures μi , supported by K(Ci),
respectively, so that

L(gi ◦ ui) =
∫

K(Ci)

gi dμi, gi ∈ Vi, i = 1,2.

Then the fibre product of measures lemma applies (Lemma 1), and we conclude that there exists
a positive measure μ, supported by u−1

1 K(C1) ∩ u−1
2 K(C2), and such that

L(f ) =
∫

f dμ � 0,

a contradiction. �
Although not the most general statement, the theorem below gives the flavor of the kind of

applications the above lemma opens.

Theorem 4.2. Let Z = X1 ×Y X2 be the fibre product of some real algebraic affine varieties, and
let Qi ⊂ R[Xi] be quadratic modules such that the induced maps fi :K(Qi) −→ Y are proper.

(a) If both Q1,2 have the (SMP), then u∗
1Q1 + u∗

2Q2 has the (SMP) with respect to the sparse
vector space u∗

R[X1] + u∗
R[X2];
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
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(b) If K(Qi) are full subsets of Xi , i = 1,2, and both Q1,2 have the (‡) property, then so does
u∗

1Q1 + u∗
2Q2 with respect to the sparse vector space u∗

1R[X1] + u∗
2R[X2].

Proof. The proof of (a) is a direct application of Lemma 1, in the spirit of the proof of the Basic
Lemma above.

To prove assertion (b) we use Lemma 5, and the fact that quadratic modules satisfy the non-
empty relative interior condition in the statement, see [17, Remark 1.1]. �

For part (a) the quadratic modules can be replaced by convex cones. However, for asser-
tion (b), if Qi = Ci are simply convex cones, then the assumption “non-empty interior” (2) is
required.

Assertion (a), plus the observation that the assumption on proper mappings is compatible with
the iteration of fibre products leads to the following observation.

Corollary 4.3. Let (Xi, fij ) be a finite projective system of real algebraic varieties, with the
ordered index set belonging to the class R. Assume that Ci ⊂ R[Xi] are convex cones with
the (SMP), satisfying (fij )

∗Ci ⊂ Cj and such that the structural maps fij :K(Cj ) −→ K(Ci)

are proper.
Then the convex cone of sparse elements

∑
i f

∗
i Ci has the (SMP) with respect to the space∑

i f
∗
i (lin.spanCi).

The analogue for assertion (b) seems to be more delicate, due to the fullness assumption.

5. Infinite projective limits

We exemplify below how the existence of projective limits of probability measures gives
natural decompositions of sparse polynomials (or limits of them) in the case of infinitely many
variables or countably many constraints.

To fix ideas, let X = proj.lim(Xi, fij ) be a directed projective limit of affine real varieties. Let
Ci ⊂ R[Xi] be convex cones with compact positivity sets K(Ci) and with the strong moment
property (SMP). Assume that

f ∗
ijCi ⊆ Cj , i � j.

That is

fijK(Cj ) ⊂ K(Ci), i � j,

whence (K(Ci), fij ) forms a projective system of compact topological spaces. We consider on
the space Z = proj.lim(K(Ci), fij ) the restriction of the vector space of polynomial functions
P = ∑

i fi
∗
R[Xi] and the closure of it P in the product topology of uniform convergence on the

factors K(Ci).

Proposition 2. In the above conditions, an element of P which is non-negative on Z belongs to
[∑ f ∗Ci]−.
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
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For the proof we again assume by contradiction that the element f ∈ P does not belong
to the closed cone in the statement. By Minkowski’s separation theorem, there exists a linear
functional L on P which satisfies

L(f ) < 0 � L(g), g ∈ P.

In particular the restricted functionals L :f ∗
i R[Xi] −→ R are non-negative on every cone Ci ,

i ∈ I . Thus, by the assumption of the strong moment property, there are positive measures μi ,
supported on K(Ci). By their very construction these measures are compatible with the projec-
tive system: (fij )∗μj = μi . According to Theorem 2.2 there exists a positive measure μ on P ,
hence supported by Z, and representing L. In particular

0 > L(f ) =
∫
Z

f dμ � 0,

a contradiction.

6. Examples and applications

6.1. The fibre product of reduced schemes may not be reduced

Here is a simple example: consider X1 = X2 = R, Y = R
2 and the morphisms f1(x1) =

(x2
1 ,−x2

1), f2(x2) = (x2
2 , x2

2). Then the algebraic fibre product is the single point X1 ×Y X2 =
{(0,0)} ⊂ R

2 with the nilpotent structure R[x1, x2]/(x2
1 , x2

2). The reduced fibre product (which
we use throughout this article), is the single point {(0,0)} with the reduced ring of functions
defined on it R = R[x1, x2]/(x1, x2).

6.2. Kojima–Lasserre Theorem

Let {I1, . . . , Ik} be a covering of the set of indices I = {1,2, . . . , d} satisfying the running in-
tersection property (1). Consider archimedean quadratic modules Qj ⊂ R[x(Ij )], 1 � j � k.
In particular the positivity sets K(Qj ) are compact (semi-algebraic) in R

Ij . Let K(Qj ) =
K(Qj ) × R

I\Ij be the associated cylinders in R
I .

Theorem 6.1 (Kojima–Lasserre). If f ∈ R[x(I1)] + · · · + R[x(Ik)] is strictly positive on⋂k
j=1 K(Qj ), then f ∈ Q1 + Q2 + · · · + Qk .

For the proof we simply invoke our main result Theorem 4.1 and Proposition 1. The original
proofs have been published in [7,20,21,23]. A completely different approach, self contained and
very ingenious appears in [8].

6.3. Sparsity with algebraic mixing

We consider a few simple examples derived from Theorem 4.1.
Let X1 = X2 = Y = R

2 with variables (xi, yi) ∈ Xi , i = 1,2. Let R1(x1, y1), R2(x2, y2) be
non-constant polynomials, and let

f1(x1, y1) = (
R1(x1, y1), y1

)
, f2(x2, y2) = (

R2(x2, y2), y2
)
.

Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
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The fibre product Z = X1 ×Y X2 is contained in R
3, with coordinates (x1, y, x2), and it is given

by the equation

R1(x1, y) = R2(x2, y).

Let Qi ⊂ R[Xi] be archimedean quadratic modules. The lifting in Z of their positivity sets is

Z+ = {
(x1, y, x2); (x1, y) ∈ K(Q1), (x2, y) ∈ K(Q2)

}
.

Our main result then applies, and it can be stated as:

If a polynomial p ∈ R[x1, y] + R[y, x2] is positive on Z+, then there are elements qi ∈ Qi ,
so that(

R1(x1, y) = R2(x2, y)
) ⇒ (

p(x1, y, x2) = q1(x1, y) + q2(x2, y)
)
.

To be even more specific, choose R1(x1, y) = x1 − h(y) so that we can solve explicitly the
defining equation of the fibre product and find Z = R

2, with coordinates (y, x2). Then the state-
ment becomes:

If the polynomial p ∈ R[x1, y] + R[y, x2] satisfies
[((

R2(x2, y) + h(y), y
) ∈ P(Q1)

)
&

(
(x2, y) ∈ P(Q2)

)]
⇒ p

(
R2(x2, y) + h(y), y, x2

)
> 0,

then

p
(
R2(x2, y) + h(y), y, x2

) = q1
(
R2(x2, y) + h(y), y

) + q2(x2, y),

with qi ∈ Qi .

6.4. Vector bundles

Assume that Y is an affine, real algebraic variety and that E1, E2 are vector bundles over Y , so
that the total spaces X1, X2 are also affine varieties, choosing the maps f1,2 to be the canonical
projections. Then X1 ×Y X2 is the total space of the Whitney sum E1 ⊕ E2.

This is the case for instance of the tautological bundle E1,2 = O(−1) over the sphere Y =
Sd−1 ⊂ R

d with total space X1,2 = {(x, v), x ∈ Sd−1, v ∈ R
d , ∃λ ∈ R, v = λx}.

A typical application of our main result reads as follows.

Let p(x, z1, z2) ∈ R[x, z1] + R[x, z2] be a sparse polynomial, where x, z1, z2 are d-tuples of
variables. If

p(x,λ1x,λ2x) > 0 whenever ‖x‖ = 1 and |λi | � 1, i = 1,2,

then there are sums of squares of polynomials σ∗ satisfying:
(‖x‖ = 1, z1 = λ1x, z2 = λ2x

)
⇒ p(x, z1, z2) = σ1(x, z1) + (

1 − ‖z1‖2)σ2(x, z1) + σ3(x, z2)

+ (
1 − ‖z2‖2)σ4(x, z2).
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
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There are quite a few other “canonical” examples of vector bundles whose total space is a real
algebraic variety. Take for instance a smooth, real algebraic variety hypersurface X ⊂ R

d given
by a single polynomial equation

X = {
x ∈ R

d ; ρ(x) = 0
}
,

where we assume ∇ρ �= 0 along X. Then the tangent bundle

T X = {
(x, v) ∈ X × R

d ; ∇xρ · v = 0
}

is real algebraic. We endow T X with the Riemannian metric given by the imbedding X ⊂ R
d .

Let

S(T X) = {
(x, v) ∈ X × Sd−1; ∇xρ · v = 0

}
be the associated bundle in spheres.

The fibre product of two copies of T X −→ X is the total space of (T X ⊕ T X) −→ X, that is
the variety

T X ×X T X = {
(x, v,w) ∈ X × R

d × R
d; ∇xρ · v = 0, ∇xρ · w = 0

}
.

Without offering more details, we consider a situation relevant to the theory of linear elliptic
PDEs. Namely, let

p(x, v,w) = p1(x, v) + p2(x,w)

be a polynomial, with p1 homogeneous of degree 2m in v, and similarly p2(x,w) homogeneous
of degree 2n in w. Assume that(

x ∈ X, ‖v‖ = ‖w‖ = 1
) ⇒ p(x, v,w) > 0.

Then Theorem 4.1 applies, giving the decomposition

p(x, v,w) = σ1(x, v) + σ2(x,w) + (
1 − ‖v‖2)σ3(x, v) + (

1 − ‖w‖2)σ4(x,w),

where σ∗ are sums of squares of polynomials in the respective variables. One step further, since p

is homogeneous in both v, w, by restricting the above decomposition to the spheres, and com-
pensating the even degrees by powers of ‖v‖2, ‖w‖2 we obtain a more precise information:

If the bi-homogeneous polynomial p(x, v,w) = p1(x, v)+p2(x,w) is positive on S(T X)×X

S(T X), then there exists a positive integer k, such that

(x ∈ X) ⇒ (‖v‖2kp1(x, v) + ‖w‖2kp2(x,w) = σ1(x, v) + σ2(x,w)
)
,

where σ1,2 are homogeneous in the second variable, and sums of squares.

6.5. Homogeneous bundles

Among the many classical homogeneous bundles (see for instance [11]) we first draw attention
to the frame bundle on an embedded hypersurface.

Let X = {x ∈ R
d; ρ(x) = 0}, (x ∈ X) ⇒ ∇xρ �= 0 as in the previous example and let

FX = {(x, v1, . . . , vd−1); ∇xvi = 0, v1 ∧ v2 ∧ · · · ∧ vd−1 �= 0} be the bundle of frames in the
tangent bundle T X. Then FX is a principal GL(d − 1,R)-bundle over X, and the fibre product
FX ×X FX is a principal GL(d − 1,R) × GL(d − 1,R)-bundle over X; its total space is a real
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001
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affine variety. We leave the reader the task to apply Theorem 4.1 and provide some examples of
sums of squares decompositions of sparse polynomials defined on FX ×X FX.

In general, if f1,2 :E −→ Y are two identical principal bundles with real-algebraic affine
global spaces and with structural algebraic groups G, then the fibre product Z = E1 ×Y E2

consists of

Z = {
(gx, x); x ∈ E, g ∈ G

}
.

The space of sparse elements corresponds to (R[E] + R[E])|Z , whence it can be identified to
the set of polynomial functions defined on E × G:

p(x) + q(gx), p, q ∈ R[E], x ∈ E, g ∈ G.

For example, let n be a positive integer, and consider the unit circle S1 ⊂ R
2, with complex

coordinate z ∈ S1, |z| = 1, and the unramified finite covering

S1 −→ S1, z �→ zn.

Then the fibre product of two copies of the same S1-principal bundle has the total space

Z = S1 ×S1 S1 = S1 × Zn.

The space of sparse (trigonometric in this case) polynomials is

V = {
p(z, z) + q

(
εkz, ε−kz

); |z| = 1, 0 � k � n − 1
}
,

where ε = exp( 2πi
n

) and p, q are real valued (i.e. hermitian) polynomials:

p(z, z) = p(z, z), q(z, z) = q(z, z).

Our main result yields.

Proposition 3. Let p(z, z), q(z, z) be real valued trigonometric polynomials. If
(|z| = 1, 0 � k � n − 1

) ⇒ p(z, z) + q
(
εkz, ε−kz

)
> 0,

then there are finitely many complex analytic polynomials si(z), tj (z), such that

(|z| = 1, 0 � k � n − 1
) ⇒ p(z, z) + q

(
εkz, ε−kz

) =
∑

i

∣∣si(z)∣∣2 +
∑
j

∣∣tj (εkz
)∣∣2

.

For the proof we simply remark that for every real valued trigonometric polynomial

h(z, z) =
k∑

j=−k

ckz
k = z−k

2k∑
j=0

ckz
k+j ,

so that

h(z, z)2 =
∣∣∣∣∣

2k∑
j=0

ckz
k+j

∣∣∣∣∣
2

, |z| = 1.
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6.6. The Hopf bundle

In the same spirit as in the last example we consider below the three-dimensional sphere

S3 = {
z ∈ C

2; |z|2 = |z1|2 + |z2|2 = 1
}

and the (twisted) Hopf fibrations on it

Hk = {(
z,λzk

)
, z ∈ S3, |λ| = 1

}
,

where k is a non-negative integer and

zk = (
zk

1, z
k
2

)
.

It is clear that Hk are real algebraic, affine varieties, described in C
4 by the equations

Hk

{
(z,w) ∈ C

2; |z| = 1, w1z
k
2 = w2z

k
1,

∣∣∣∣wi

zk
i

∣∣∣∣ = 1

}
.

Thus the projection maps Hk −→ S3 provide bundles in S1-spheres.
The fibre product Z = Hk ×S3 H
 can be identified with the real affine sub-variety of C6:

Z = {
(z, u, v); (z, u) ∈ Hk, (z, v) ∈ H


}
.

The corresponding space of sparse hermitian (real valued) polynomials is

V = {
p(z,u; z,u) + q(z, v; z, v); (z, u) ∈ Hk, (z, v) ∈ H


}
.

Remark the free action of the group S1 × S1 on the variables (u, v).
Thus, we are led to the following conclusion.

Proposition 4. Assume that the hermitian polynomials p, q satisfy[
(z, u) ∈ Hk, (z, v) ∈ H


] ⇒ p(z,u; z,u) + q(z, v; z, v) > 0.

Then there are finitely many hermitian polynomials si , tj , such that[
(z, u) ∈ Hk, (z, v) ∈ H


]
⇒ p(z,u; z,u) + q(z, v; z, v) =

∑
i

∣∣si(z, u; z,u)
∣∣2 +

∑
j

∣∣tj (z, v; z, v)
∣∣2

.

6.7. Cylindrical sets with the (‡) property

Let x = (x1, . . . , xn) ∈ R
n and y ∈ R. We are concerned with cylindrical sets with basis

in R
n of the form K(Q′

1) × R, where Q′
1 ⊂ R[x] is an archimedean preorder. When regarding

Q′
1 ⊂ R[x, y], this preorder ceases to have the archimedean property, but it satisfies condition (‡),

see [17].
We would like to analyze below the fibre product of two such structure, and compare our

sparse polynomial decomposition, to the standard full algebra one. Specifically, consider another
system of variables z = (z1, . . . , zm) and an archimedean preorder Q′

2 ⊂ R[z]. Let

f1 : Rn × R −→ R, f2 : Rm × R −→ R

be the projection maps. The fibre product of the two arrows is the space R
n × R × R

m with
coordinates (x, y, z). Assume that the positivity sets K1,2 = K(Q′ ) have non-empty interior
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
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in R
n, respectively R

m. Then the projection maps fi :Ki × R −→ R are obviously proper.
Let Q1,2 be the preorders generated by Q′

1,2 in the algebras R[x, y], respectively R[y, z].
In virtue of Lemma 5 the convex cone

Q1 + Q2 ⊂ R[x, y] + R[y, z]
has property (‡) with respect to the same sparse subspace. Its positivity set is

K = K(Q1 + Q2) = K1 × R × K2,

hence again a cylinder with generatrix parallel to the y direction. Thus we conclude that for every
f ∈ R[x, y] + R[y, z] which non-negative on K there exists an element q ∈ Q1 + Q2 such that
for all ε > 0 we have f + εq ∈ Q1 + Q2.

On the other hand, property (‡) applied to the preorder Q generated by Q1, Q2 in R[x, y, z]
gives for the same element a q ∈ Q, such that f + εq ∈ Q.

In both cases one can show as in [17] that q = q(y) can be chosen to be a universal polynomial
depending only on y and the degree of f .

To give a particular example, let us choose preorders generated by a single polynomial:

Q′
1 = ΣR[x]2 + h1(x)ΣR[x]2,

Q′
2 = ΣR[z]2 + h2(z)ΣR[z]2.

Then

Q1 = ΣR[x, y]2 + h1(x)ΣR[x, y]2,

and

Q2 = ΣR[y, z]2 + h2(z)ΣR[y, z]2.

Thus, if

f ∈ R[x, y] + R[y, z], f |K � 0,

there exists q ∈ R[x, y] + R[y, z], such that for all ε > 0,

f + εq ∈ ΣR[x, y]2 + h1(x)ΣR[x, y]2 + ΣR[y, z]2 + h2(z)ΣR[y, z]2.

On the other hand, the standard Positivstellensatz implied by property (‡) in the set of all
variables, only gives:

f + εq ∈ ΣR[x, y, z]2 + h1(x)ΣR[x, y, z]2 + h2(z)ΣR[x, y, z]2

+ h1(x)h2(z)ΣR[x, y, z]2.

6.8. Approximating holomorphic functions of an infinity of variables

The problem of approximating on convex sets holomorphic functions of infinitely many vari-
ables by polynomials is rather delicate, and not fully solved, see for instance [22]. We provide
a simple application of Proposition 2.

Let x = {x1, x2, . . .} be a countable system of variables, seen as coordinates in the real Hilbert
space H = l2(N). Let B1(H) = {x ∈ H ; ‖x‖2 = x2

1 + x2
2 + · · · � 1} be the closed unit ball.

Endowed with the weak topology, we can regard B1(H) = proj.lim(B1(V ), rV,W ), where V
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runs over all finite-dimensional subspaces of H , and rV,W :B1(W) −→ B1(V ) is the orthogonal
projection map, whenever V ⊂ W . By passing to an increasing subsequence of subspaces, say

Vn = {
(x1, x2, . . . , xn,0,0, . . .); xi ∈ R

}
,

we still have the topological identification

B1(H) = proj.lim
(
B1(Vn), rVn,Vn+1

)
.

Let ΣR[x1, . . . , xn]2 denote, as before, the convex cone of sums of squares of polynomials, in
the respective number of variables.

Let F :B1(H) −→ R be the germ of a holomorphic function (see [22] for the precise defini-
tion). In particular F is a weak limit of a sequence of polynomials in finitely many (but increasing
in number) of variables. The conditions of Proposition 2 are met, and we can state the following
result.

Proposition 5. Let F :B1(H) −→ R be the germ of a holomorphic, non-negative function. Then
there are polynomials pn ∈ ΣR[x1, . . . , xn]2 + (1 − x2

1 − · · · − x2
n)ΣR[x1, . . . , xn]2, such that

F = w- limn pn, more precisely the convergence is uniform on every cylinder over B1(Vk), k � 1.

As a matter of fact, we can prove a more refined statement, which will go beyond any standard
method of approximation by power series. Namely, assume that the non-negative function F and
the set B1(H) in the statement have some sparsity structure, subject to the condition R. For
instance, assume that we replace B1(H) by the closed set in H :

K = {
x; x2

2k + x2
2k+1 + x2

2k+2 � 3−k, k � 1
}
.

Fix a positive integer N . Then the finite projective limit over k � N of real affine varieties
Spec R[x2k, x2k+1, x2k+2] and quadratic modules

Qk = ΣR[x2k, x2k+1, x2k+2]2 + (
3−k − x2

2k − x2
2k+1 − x2

2k+2

)
ΣR[x2k, x2k+1, x2k+2]2

satisfy the condition in our main result. Denote KN = proj.limN
k=1 P(Qk). In its turn, K =

proj.limKN .

Corollary 6.2. In the above conditions, assume that in the germ of holomorphic function
F :K −→ R only monomials of the form x

p

2kx
q

2k+1x
r
2k+2, k � 1, appear. If F is non-negative

on K , then there are polynomials pk ∈ Qk , such that F = w- lim
∑

k pk .

The reader will easily construct similar examples based on the above pattern.

6.9. Countably many constraints

Every compact subset K ⊂ R
d can be written as an intersection of countable many semi-

algebraic sets:

K = {
x ∈ R

d; qi(x) � 0, i � 1
}
.

Let {I1, . . . , Ik} be a covering of the set of indices {1, . . . , d} satisfying the running intersection
property, as in Kojima–Lasserre Theorem. Assume that the defining functions qi , i � 1, are
Please cite this article in press as: S. Kuhlmann, M. Putinar, Positive polynomials on projective limits of real algebraic
varieties, Bull. Sci. math. (2008), doi:10.1016/j.bulsci.2008.06.001



ARTICLE IN PRESS BULSCI:2290
JID:BULSCI AID:2290 /FLA [m1+; v 1.95; Prn:28/07/2008; 11:58] P.19 (1-20)

S. Kuhlmann, M. Putinar / Bull. Sci. math. ••• (••••) •••–••• 19
subject to this sparsity pattern (that is qi contains only monomials in a set of variables Ij (i)

depending on i), and that they define archimedean quadratic modules. In particular

Qm =
∑
j

ΣR
[
x(Ij )

]2 + q1ΣR
[
x(Ij (1))

]2 + · · · + qmΣR
[
x(Ij (m))

]2

are convex cones for all m; they possess the (SMP) by our main result, and have compact posi-
tivity sets. Thus, Proposition 2 applies, and we obtain the following conclusion.

Proposition 6. With the above assumptions, let p ∈ ∑
j R[x(Ij )] be a sparse polynomial which

is non-negative on the set K . Then there is a sequence of polynomials qm ∈ Qm which converges
uniformly to p on K .

Note that a Stone–Weierstrass argument cannot be used in general to prove such a statement,
due to the fact that sparse polynomials do not form an algebra.
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