A Family of 2^{\aleph_1} Logarithmic Functions of Distinct Growth Rates *

Salma Kuhlmann

August 3, 2010

Abstract

We construct a totally ordered sets Γ of positive infinite germs (i.e. germs of positive real valued functions that tend to $+\infty$), with order type the lexicographic product $\aleph_1 \times \mathbb{Z}^2$. We show that Γ admits 2^{\aleph_1} order preserving automorphisms of pairwise distinct growth rates.

1 Introduction

We consider real valued functions, defined on some final segment of the real line. Say that f and g have the same germ at $+\infty$ if they are ultimately equal, i.e. if f(x) = g(x) for all x large enough. This defines an equivalence relation on the set of real valued functions. The germ of f is defined to be the equivalence class of f and will also be denoted by f. Write $f \prec g$ if f(x) < g(x) for all x large enough. Let \mathcal{G} denote the ring of all germs. The relation \prec defines a partial order on \mathcal{G} . This partial order was first introduced by Paul Du Bois-Reymond and subsequently studied by many authors. In particular, Hausdorff [H1909a], respectively Hardy [Har1954] investigated the totally ordered subsets (respectively subfields) of \mathcal{G} . See [Step09] and [Koj09] for comprehensive historical accounts on this subject.

In this note we consider totally ordered sets Γ of positive infinite germs (i.e. germs of positive real valued functions that tend to $+\infty$). We construct such Γ with order type the lexicographic product $\aleph_1 \times \mathbb{Z}^2$. We show that Γ admits 2^{\aleph_1} order preserving automorphisms of pairwise distinct growth rates.

^{*2000} Mathematics Subject Classification: Primary: 06A05, Secondary: 03C60.

We were led to such investigations while constructing models of $\operatorname{Th}(\mathbb{R}, \exp)$ (the elementary theory of the ordered field of real numbers with the exponential function) using fields of formal power series $\mathbb{R}((\Gamma))$. The choice of Γ as above gives a natural functional interpretation to the formal constructions described in [KS05].

2 An asymptotic scale indexed by $\aleph_1 \times \mathbb{Z}^2$

Let Γ be a set of positive infinite germs. We assume that Γ is totally ordered by \prec . For an automorphism σ , denote by $\sigma^{(n)}$ its *n*-th iterate.

We recall some terminology ([Kuh00, Remark 3.20 p. 57]) for more details. Let σ be an automorphism of a totally ordered set Λ . The *rank* of (Λ, σ) is the order type of the quotient Λ / \sim_{σ} , where $a \sim_{\sigma} a'$ if and only if there exists $n \in \mathbb{N}$ such that $\sigma^{(n)}(a) \geq a'$ and $\sigma^{(n)}(a') \geq a$.

We now construct Γ as promised in the introduction.

For $(p,q) \in \mathbb{Z}^2$, we denote by $g_{p,q}$ the positive infinite germ

$$x \mapsto \exp\left(x^q \exp\left(x^p\right)\right)$$
.

If we endow \mathbb{Z}^2 with the lexicographic order, then (p,q) < (p',q') implies $g_{p,q} \prec g_{p',q'}$.

Now let $(h_{\alpha})_{\alpha \in \aleph_1}$ be a sequence of positive infinite germs h_{α} , in such a way that $\alpha < \beta$ implies $h_{\alpha} \prec h_{\beta}$, see the remark below.

For all $(\alpha, p, q) \in \aleph_1 \times \mathbb{Z}^2$, we denote $f_{\alpha, p, q}$ the germ at $+\infty$ of the function $\exp_3(h_\alpha(x)) g_{p,q}(x)$ (here \exp_3 denotes the third iterate of exp).

These germs are defined in such a way that if $(\alpha, p, q) < (\alpha', p', q')$ for the lexicographic order, then $f_{\alpha, p, q} \prec f_{\alpha', p', q'}$.

We now construct 2^{\aleph_1} automorphisms on Γ of pairwise distinct ranks. To this end, we fix two automorphisms on $\Gamma_1 = \{g_{p,q}, (p,q) \in \mathbb{Z}^2\}$ defined by :

$$\sigma(g_{p,q}) = g_{p-1,q}$$

$$\rho(g_{p,q}) = g_{p,q-1}$$

It follows easily from the definition of $g_{p,q}$ that the rank of (Γ_1, σ) is 1 and the rank of (Γ_1, ρ) is \mathbb{Z} . We define now, for every $S \subset \aleph_1$, the automorphism τ_S on Γ :

$$\tau_{S}(f_{\alpha,p,q}) = \begin{cases} f_{\alpha,p-1,q} = \exp_{3}(h_{\alpha}) \sigma(g_{p,q}) & \text{if } \alpha \in S \\ f_{\alpha,p,q-1} = \exp_{3}(h_{\alpha}) \rho(g_{p,q}) & \text{if } \alpha \notin S \end{cases}$$

Now it is shown in [KS05, Section 7] that such pairwise distinct automorphisms σ have pairwise distinct ranks.

Remark. The existence of such a sequence $(h_{\alpha})_{\alpha \in \aleph_1}$ is established e.g. in [H1909a]. One can describe for example the first ϵ_0 terms of such a sequence. Set $h_0(x) := x$. We define h_{α} by transfinite induction for $\alpha < \epsilon_0$. If the Cantor normal form of α is $\omega^{\beta_r} d_r + \cdots + \omega^{\beta_1} d_1 + d_0$, with $\beta_1 < \cdots < \beta_r < \alpha$ and $d_0, \ldots, d_r \in \mathbb{N}$, set

$$h_{\alpha}(x) := \exp\left(d_r h_{\beta_r}(x) + \dots + d_1 h_{\beta_1}(x)\right) \exp(x)^{d_0}$$

We can set $h_{\epsilon_0} := t(x)$ where t(x) is a germ of transexponential growth.

References

- [Har1954] G. H. Hardy: Orders of Infinity; The Infinitär Calcül of Paul Du Bois-Reymond, Cambridge University Press, 1954.
- [H1909a] F. Hausdorff: Die Graduierung nach dem Endverlauf, Abhandlungen der Königl. Sächs. Ges. der Wiss. zu Leipzig. Math.-Phys. Klasse 31, 295-334 (1909).
- [Koj09] M. Kojman: History of Singular Cardinals in the 20th Century: From Hausdorff's Gap to Shelah's PCF Theory, in Handbook of the History of Logic vol. 6, Elsevier, to appear.
- [KS05] S. Kuhlmann and S. Shelah : κ -bounded exponential-logarithmic power series fields, Ann. Pure Appl. Logic, **136**, 284-296 (2005).
- [Kuh00] S. Kuhlmann : Ordered exponential fields, Fields Institute Monographs volume 12, American Mathematical Society, Providence, RI, (2000).
- [Step09] J. Steprans: *History of the Continuum in the 20th Century*, in Handbook of the History of Logic **vol. 6**, Elsevier, to appear.

S. Kuhlmann: Fachbereich Mathematik und Statistik, Universität Konstanz, 78457 Konstanz, Germany. Email: salma.kuhlmann@uni-konstanz.de