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Abstract

The lexicographic power ∆Γ of chains ∆ and Γ is, roughly, the Cartesian power∏
γ∈Γ ∆, totally ordered lexicographically from the left. Here the focus is on certain

powers in which either ∆ = R or Γ = R, with emphasis on when two such powers
are isomorphic and on when ∆Γ is 2-homogeneous. The main results are:
1) For a countably infinite ordinal α, Rα∗+α ' Rα.

2) RR 6' RQ.
3) For ∆ a countable ordinal ≥ 2, ∆R, with its smallest element deleted, is 2-
homogeneous.

1 Introduction

The study of lexicographic powers of chains (totally ordered sets) goes back to Hausdorff
[H1] 1 and [H2]. Let Γ 6= ∅ be an index chain, and ∆ a chain (the base chain) with
distinguished element 0 (the base point). The support of a sequence s = (δγ)γ∈Γ ∈∏

γ∈Γ ∆ is support (s) := {γ ∈ Γ ; s(γ) = δγ 6= 0}. The lexicographic power (computed
in base 0) is the chain obtained as follows. We consider the following subset of

∏
γ∈Γ ∆:

∆Γ := {s : Γ → ∆; support (s) is wellordered} = {s ∈ ∏

γ∈Γ

∆; support (s) is wellordered},

which we order lexicographically from the left (also known as “order by first differences”).
That is, for distinct s = (δγ)γ∈Γ and s′ = (δ′γ)γ∈Γ ∈ ∆Γ, we let γ0 be the smallest γ ∈ Γ for
which s(γ) 6= s′(γ) (γ0 exists since support (s) ∪ support (s′) is wellordered), and we set
s < s′ iff s(γ0) < s′(γ0) . In the sequel, when s and t are distinct elements of a lexicographic
power ∆Γ we will denote by dif(s, t) the smallest γ ∈ Γ for which s(γ) 6= t(γ).

Although ∆Γ depends on the base point 0 (cf. Remark 2.8), our notation in this paper
will not reflect this dependence. Recall that a chain ∆ is said to be homogeneous
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1A translation into English of this paper appears as an appendix in [G].
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(or transitive) if given a, b elements of ∆, there exists an automorphism σ of ∆ such
that σ(a) = b (for example, the underlying chain of a totally ordered group A is always
homogeneous: in the additive notation, given a and b as above define σ(x) = x+(b− a)).
If ∆ is homogeneous, then the lexicographic powers ∆Γ are all isomorphic for any choice
of the base point 0 of ∆ (cf. Remark 2.8). Therefore when the base ∆ is R we shall always
assume that the base point 0 is the usual real 0. Also, when ∆ is an ordinal, we assume
unless specified otherwise that the base point is its least element 0 (but here not all base
points need give isomorphic lexicographic powers; cf. the discussion in Section 2).

Our notation for lexicographic powers differs slightly from Hausdorff’s: our ∆Γ is written
by Hausdorff as ∆Γ∗ . (Γ∗ denotes the dual of Γ, that is Γ with its order reversed.) In the
special case when α and β are ordinals, our αβ∗ is (isomorphic to) the ordinal αβ [H1].
(We suspect that Hausdorff’s notation for lexicographic powers was chosen precisely to
be consistent with Cantor’s notation for ordinal exponentiation.)

In [H2] Hausdorff’s major interest in lexicographic powers is in their 2-homogeneity:
a chain A (containing more than 2 elements) is said to be 2-homogeneous (or 2-
transitive) if given a1, a2, b1, b2 elements of A such that a1 < b1 and a2 < b2, there exists
an automorphism σ of A such that σ(a1) = a2 and σ(b1) = b2. If A is 2-homogeneous, then
all open intervals of A are isomorphic; and conversely, provided A has no endpoints. Also
if A is 2-homogeneous then it is n-homogeneous for all natural numbers n ≥ 2 (defined
analogously). Also if A is 2-homogeneous then so is A∗.

Example 1.1 The underlying chain of a totally ordered field F is always 2-homogeneous.
In fact given a1, a2, b1, b2 as above define σ(a) = (a− a1)

(b2−a2)
(b1−a1)

+ a2.

Let α be a nonzero ordinal. There are uniquely determined ordinals α1 ≥ . . . ≥ αn such
that α = ωα1 + . . . + ωαn . This is called the Cantor normal form of α and α is called
additive principal if n = 1 in its Cantor normal form. That is, α is additive principal
if it is an ordinal power of ω, or equivalently, if α is isomorphic to any of its nonempty
final segments [W; Proposition 2.8].

We mention now two results of Hausdorff’s [H2, pp. 173–178] that relate to the material
of our paper. We shall not make any use of them other than one in Corollary 3.6, which
is not itself used for anything else in this paper.

Theorem 1.2 (Hausdorff) Let κ be an infinite regular cardinal (or more generally, an
infinite additive principal ordinal), and let ∆ be a chain with base point 0. Suppose that
∆ has no endpoints. Then ∆κ is 2-homogeneous.

Hausdorff’s argument proves Theorem 1.2 for κ regular, though he does not explicitly
state this theorem; and his argument can be adapted to deal with the general case. For
the case where ∆ = R, cf. [W; Proposition 2.14]:

Corollary 1.3 (Hausdorff, Warton) Let α be an ordinal. If α is additive principal then
Rα is 2-homogeneous.

The converse of this corollary is also true, as we shall prove in Section 4, Theorem 4.5.
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The second result of Hausdorff is not about the full lexicographic power ∆κ, but rather
about its λ–restricted subchains: for an ordinal λ ≤ κ we let (∆κ)λ denote the subchain
consisting of those sequences s for which the order type of support (s) is < λ.

Theorem 1.4 (Hausdorff) Suppose the hypotheses of Theorem 1.2 hold, except that now
∆ is permitted to have endpoints provided its base point 0 is not an endpoint. Let λ be
an infinite regular cardinal (or more generally, an infinite additive principal ordinal) such
that λ ≤ κ. Then (∆κ)λ is 2-homogeneous.

This time the result is explicitly stated by Hausdorff for the case κ and λ are both regular,
and again can be adapted to deal with the general case.

In [K1], the second author studied lexicographic powers of the form RΓ. The main result
of [K1] is the following:

Theorem 1.5 Let α be an ordinal, and J a chain in which the chain R does not embed.
Assume that ϕ is an embedding of Rα in RJ . Then there is s ∈ im ϕ such that the order
type of support (s) is ≥ α.

Corollary 1.6 Let α be an ordinal, and J a chain in which the chain R does not embed.
Assume that Rα embeds in RJ . Then α embeds in J . In particular, if α and β are distinct
ordinals, then Rα 6' Rβ .

In this paper, we study in more detail the relation between the lexicographic power and
its exponent. We focus on powers in which either ∆ = R or Γ = R, with emphasis on
when two such powers are isomorphic and on when ∆Γ is 2-homogeneous. For example
Corollary 1.6 says that

if RΓ ' RΓ′then Γ ' Γ′

holds when Γ and Γ′ are ordinals. Does it hold for arbitrary chains Γ and Γ′? Addressing
this question, we prove in Section 3 that:

Theorem A (3.4) If α is any countably infinite ordinal, then Rα∗+α ' Rα.

On the other hand in Section 5 we find that

Theorem B (5.2) RR 6' RQ.

The last main theorem, in Section 6, is

Theorem C (6.1) Let ∆ be a countable ordinal ≥ 2, with its least element 0 as base
point. Then ∆R (with its minimum element deleted) is 2-homogeneous.

We mention that Sections 4, 5 and 6 are independent of each other and can be read in
any order.

An early application of lexicographic powers (even preceding Hausdorff) was the theorem
of H. Hahn (cf. [F]) that every abelian totally ordered group embeds in a lexicographic
power RΓ endowed with the obvious additive group structure. He also investigated formal
power series F ((G)) where F is an ordered field and G an ordered group. The underlying
chain of F ((G)) is just the lexicographic power FG (see [F]). More recently, lexicographic
powers have found interesting applications to the study of convex congruences of Aut(Rα),
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α an ordinal (cf. [W]), and to ordered exponential fields (cf. [K2], [K–K–S1], [K–K–S2]
and [K–S]). We hope to investigate further their properties in future work.

Acknowledgments: We would like to thank M. Droste, M. Giraudet, and J. Truss for
several helpful discussions. We thank T. Green for pointing out, in an earlier version of
this paper, an error in the proof of Lemma 5.4, and for suggesting the way to correct it.

2 Definitions, arithmetic rules, and coterminalities

Let us introduce some notation and terminology. Let Γ and Γ′ be chains. The sum Γ+Γ′

is the chain formed by concatenation, with Γ < Γ′. More generally, if {Γi; i ∈ I} is a
collection of chains indexed by a chain I, we define the sum

∑
i∈I Γi analogously. Note that

our definition coincides with ordinal addition in case Γ and Γ′ are ordinals. We denote
by Γ ~qΓ′ the lexicographic product of Γ and Γ′. That is, Γ ~qΓ′ is the chain obtained
by ordering the Cartesian product Γ × Γ′ lexicographically from the left. If α and β are
ordinals then α ~q β is (isomorphic to) the ordinal product βα.

To provide some context, we mention briefly the more general notion of lexicographic
product of a family of chains {∆γ ; γ ∈ Γ} with index chain Γ and for each γ ∈ Γ,
a base point 0γ ∈ ∆γ . The definition is analogous to that for lexicographic powers. The
lexicographic product (or Hahn product) is

H
γ∈Γ

∆γ := {s ∈ ∏

γ∈Γ

∆γ ; support (s) is wellordered},

totally ordered lexicographically from the left; where support (s) := {γ ∈ Γ ; s(γ) 6= 0γ}.
Lexicographic exponentiation of chains: When all ∆γ’s are the same chain ∆, and
all base points 0γ are the same element 0 ∈ ∆, Hγ∈Γ ∆γ is the lexicographic power ∆Γ

discussed in the Introduction.

Proposition 2.1 ∆Γ has a minimum (respectively, maximum) element s0 iff ∆ has a
minimum (respectively, maximum) element δ0 and either the base point 0 = δ0, or Γ is
well ordered. When these conditions obtain, then s0 is the constant function s0(γ) = δ0

for all γ ∈ Γ.

Proof: The only possible candidate for a minimal (maximal) element of ∆Γ is the above
s0. The rest follows easily. 2

We shall denote by 0 the sequence with empty support in ∆Γ, that is, the constant
sequence s ∈ ∆Γ defined by s(γ) = 0 for all γ ∈ Γ. We note from the above proposition
that 0 is the minimum (respectively, maximum) element of ∆Γ if and only if 0 is the
minimum (respectively, maximum) element of ∆.

Anti-lexicographic exponentiation of chains: The anti-lexicographic power Γ∆
is the set

{s : Γ → ∆ ; support(s) is anti-wellordered in Γ},
ordered anti-lexicographically, i.e., from the right (also known as “ordered by last differ-
ences”).

The proofs of the following three results are straightforward:
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Proposition 2.2 Let Γ be a chain, and ∆ a chain with a base point 0. Then the anti-
lexicographic power Γ∆ coincides with the lexicographic power ∆Γ∗.

Although Proposition 2.2 provides a simple way of “translating” results from the lexico-
graphic notation to the anti-lexicographic notation, one has to be very careful in doing
so. For example, if two lexicographic powers are isomorphic, the corresponding anti-
lexicographic powers need not be (see Example 4.4).

Proposition 2.3 Let Γ be a chain and ∆ a chain with base point 0. Then (∆Γ)∗ coincides
with the lexicographic power (∆∗)Γ.

Lemma 2.4 Let Γ be a chain and ∆ a chain with base point 0. Let ∆1 be a chain and
suppose that there is an isomorphism φ : ∆ → ∆1. Then φ lifts to an isomorphism

φ̂ : ∆Γ → ∆Γ
1

where the base point of ∆1 is taken to be φ(0).

Proof: For s ∈ ∆Γ and γ ∈ Γ, define (φ̂(s))(γ) = φ((s(γ)). 2

A chain A is symmetric if there is an order-reversing bijection (an anti-isomorphism)
φ : A → A (or equivalently, an isomorphism φ : A → A∗).

Corollary 2.5 Let Γ and ∆ be chains with 0 ∈ ∆ a base point. Suppose that ∆ is
symmetric, with an anti-isomorphism φ : ∆ → ∆. Then ∆Γ ' (∆∗)Γ = (∆Γ)∗, where the
two last lexicographic powers are computed in base φ(0) . In particular, if φ(0) = 0 then
∆Γ is symmetric.

Corollary 2.6 Let Γ and ∆ be chains, with ∆ = n = {0, · · · , n− 1}, n > 1 finite. Then
for every i ∈ ∆ we have ∆Γ ' (∆Γ)∗, where the first lexicographic power is computed in
base i, and the second lexicographic power is computed in base n− (i + 1). In particular,
if n is odd then ∆Γ, computed in base n−1

2
(the midpoint of n) is symmetric.

From Corollary 2.5, we see that whenever ∆Γ is independent (up to isomorphism) of the
choice of the base point 0 ∈ ∆, then symmetry of ∆ implies symmetry of ∆Γ. However,
as mentioned in the Introduction, lexicographic powers depend in general on the choice of
the base point (see example at the end of Remark 2.7). The following is a brief analysis
of this issue (we return to symmetry in Corollary 2.9 after this discussion).

Remark 2.7 Relation to ordinal exponentiation:

As mentioned in the Introduction, when α and β are ordinals, our lexicographic power
αβ∗ is the ordinal αβ (or the anti-lexicographic power βα is the ordinal αβ).

We remind the reader that the chosen base point here is the least element 0 ∈ α. For
example if α is the ordinal 2 = {0, 1}, then the lexicographic power 2β∗ , when computed
in base 1 ∈ {0, 1} instead of 0, is the reverse of the ordinal 2β. Indeed by Corollary 2.5,
applied with the anti-automorphism which switches 0 and 1, we see that for any chain Γ,
the lexicographic power 2Γ computed in base 1 ∈ {0, 1} is isomorphic to the reverse of
the lexicographic power 2Γ computed in base 0.
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Remark 2.8 Dependence on the chosen zero in lexicographic exponentiation
of chains:

In [H1] Hausdorff introduces lexicographic products as follows. Given {∆γ ; γ ∈ Γ} with
index chain Γ, define a partial order on the Cartesian product

∏
γ∈Γ ∆γ by comparing

two sequences s and t lexicographically from the left just in case support (s, t) := {γ ∈
Γ; s(γ) 6= t(γ)} has a least element γ0, and then defining s < t iff s(γ0) < t(γ0). Now define
an equivalence relation on

∏
γ∈Γ ∆γ: s ∼ t if support (s, t) is wellordered. The equivalence

classes are maximal chains in this partial order. Let [s] denote the equivalence class of
s ∈ ∏

γ∈Γ ∆γ. Then each [s] is a lexicographic product defined by s, that is, with base
points 0γ = s(γ) ∈ ∆γ . So if t ∼ s then the lexicographic product with base points
0γ = t(γ) coincides with the lexicographic product defined by s, and conversely.

If Γ is wellordered then there is a unique equivalence class, and the lexicographic product
of {∆γ ; γ ∈ Γ} with index chain Γ is uniquely determined (independent of the chosen
base points). It is just

∏
γ∈Γ ∆γ totally ordered lexicographically.

Note that s and t may still define isomorphic lexicographic products even if t 6∼ s. This is
the case for example, as noted in the Introduction, if each of the ∆γ ’s is a homogeneous
chain: generalizing the proof of Lemma 2.4, for each γ ∈ Γ fix an automorphism πγ of ∆γ

satisfying πγ(s(γ)) = t(γ). Then the πγ’s induce the required isomorphism in the obvious
way. Moreover, this induced isomorphism maps base sequence to base sequence.

Corollary 2.9 Assume that ∆ is symmetric. Then ∆Γ is symmetric (for any choice of
the base point 0) if either Γ is wellordered or ∆ is homogeneous.

In general, our understanding of symmetry of lexicographic powers ∆Γ is limited to the
above results. If ∆ 6= 1, Γ is not wellordered and ∆Γ has a minimum (dually, a maximum),
then by Proposition 2.1 ∆Γ has no maximum (dually, no minimum) and of course ∆Γ is
not symmetric; but what if the endpoint is deleted? See the problems at the end of Section
6.

Remark 2.10 To what extent can one hope to say that a chain isomorphism φ : ∆Γ1
1 '

∆Γ2
2 between lexicographic powers must also preserve the 0’s, that is, φ(01) = 02?

(1) Assume that Γ1 and Γ2 are not wellordered. (If Γi is wellordered then the base point
0i is irrelevant.) If one (and thus the other) of ∆Γ1

1 , ∆Γ2
2 has a minimum (maximum), then

01 and 02 are these minimums (maximums) by Proposition 2.1, so indeed φ(01) = 02.

(2) Suppose that either ∆i, or more generally, some ∆Γi
i is homogeneous (as will be the

case in almost all the lexicographic powers considered in this paper which do not meet
the conditions of (1)). Then φ can be followed or preceded by an automorphism of ∆Γi

i

to obtain an isomorphism φ′ : ∆Γ1
1 ' ∆Γ2

2 for which φ′(01) = 02.

We now gather some well known facts, most of them elementary enough that we can omit
the proofs.

Lemma 2.11 Let Γ and Γ′ be any chains. Then Γ ~qΓ′ ' ∑
γ∈Γ Γ′.

Note that the operations + and ~q are both associative, but in general not commutative.
Observe also that
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Lemma 2.12 Let Γ, Γ′ and Γ′′ be chains. Then (Γ + Γ′) ~qΓ′′ ' (Γ ~qΓ′′) + (Γ′ ~qΓ′′).

Clearly (Γ1 + Γ2)
∗ ' Γ∗2 + Γ∗1 and (Γ1

~qΓ2)
∗ ' Γ∗1 ~qΓ∗2.

The following result of [H1] will be very useful

Lemma 2.13 The following rules hold for lexicographic powers:

∆Γ+Γ′ ' ∆Γ ~q∆Γ′ .

More generally, if {Γi; i ∈ I} is a collection of chains indexed by a chain I, then

∆
∑

i∈I
Γi 'H

i∈I
∆Γi ,

where the base point of ∆Γi is 0, the sequence with empty support. In particular

∆Γ ~qΓ′ ' (∆Γ′)Γ.

Proof: The first assertion is clear. For the second, assume that s ∈ ∆
∑

i∈I
Γi . For every

i ∈ I, set Si = support (s)∩Γi. Each Si is wellordered and {i; Si 6= ∅} is wellordered. Now
define s′ ∈Hi∈I ∆Γi by setting s′(i) = s |\ Γi. Clearly, s |\ Γi ∈ ∆Γi since support (s |\ Γi) =
Si is wellordered in Γi. So s′ is well defined. Also support (s′) = {i ; Si 6= ∅} is wellordered
in I. So s′ ∈Hi∈I ∆Γi . Clearly the map s 7→ s′ is order preserving and onto. For the last
assertion compute:

∆Γ ~qΓ′ ' ∆
∑

γ∈Γ
Γ′ ' H

γ∈Γ
∆Γ′ ' (∆Γ′)Γ.

2

Recall that for ordinals α and β, the ordinal product βα is (isomorphic to) α ~q β. So by
Lemma 2.13 we get that ∆βα ' (∆β)α.

Corollary 2.14 The following implications hold for lexicographic powers:

(1) ∆Γ1 ' ∆Γ2 and ∆Γ′1 ' ∆Γ′2 ⇒ ∆Γ1+Γ′1 ' ∆Γ2+Γ′2 .

(2) ∆Γ1 ' ∆Γ2 ⇒ ∆Γ ~qΓ1 ' ∆Γ ~qΓ2.

We now gather a few useful observations concerning homogeneous and 2-homogeneous
lexicographic powers.

Proposition 2.15 A lexicographic power ∆Γ is homogeneous if ∆ is homogeneous (for
any choice of a base point 0 ∈ ∆).

Proof: Fix 0 ∈ ∆. Let s and t ∈ ∆Γ (where ∆Γ is computed in base 0). As in Remark
2.8 the automorphisms πγ of ∆ satisfying πγ(s(γ)) = t(γ) induce an isomorphism between
the lexicographic product with base points s(γ) and the lexicographic product with base
points t(γ). But since s ∼ 0 ∼ t the products coincide with ∆Γ (with base point 0), so
that the induced isomorphism is an automorphism mapping s to t. 2

The following proposition, also proved in [G], provides sufficient conditions for a lexico-
graphic power to be 2-homogeneous. Note that these conditions are not necessary (see
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Corollary 2.23). For each γ ∈ Γ, we define a pair of equivalence relations Cγ and Cγ on
∆Γ by setting

sCγt if and only if s(γ′) = t(γ′) for all γ′ < γ,

and
sCγt if and only if s(γ′) = t(γ′) for all γ′ ≤ γ.

The equivalence classes of an s ∈ ∆Γ will be denoted by sCγ and sCγ, respectively. It is
clear that each sCγ and each sCγ is convex.

Proposition 2.16 A lexicographic power ∆Γ is 2-homogeneous if Γ is homogeneous and
∆ is 2-homogeneous.

Proof: Let s1 < t1 and s2 < t2 for some elements si, ti ∈ ∆Γ. Let γi = dif(si, ti),
and choose an automorphism φ of Γ such that φ(γ1) = γ2. Then φ induces an auto-
morphism φ̄ of ∆Γ such that for each x ∈ ∆Γ and γ ∈ Γ, (φ̄(x))(γ) = x(φ−1(γ)). Then
dif(φ̄(s1), φ̄(t1)) = γ2, so we may assume that γ1 = γ2 = γ, say. We have s1(γ) < t1(γ)
and s2(γ) < t2(γ), and we choose an automorphism ψ of ∆ such that ψ(s1(γ)) = s2(γ)
and ψ(t1(γ)) = t2(γ). Then ψ induces an automorphism ψ̄ of ∆Γ such that for each
x ∈ ∆Γ,

(ψ̄(x))(λ) =

{
ψ(x(λ)) if λ = γ ,
x(λ) if not.

Then ψ̄(s1Cγ) = s2Cγ and ψ̄(t1Cγ) = t2Cγ, so we may assume that s1Cγ = s2Cγ < t1Cγ =
t2Cγ. Clearly (or see Lemma 3.1) each Cγ-class xCγ ' ∆Φ, where Φ = {α ∈ Γ ; γ < α}, so
that xCγ is homogeneous (by Proposition 2.15). Therefore we can choose an automorphism
σ of siCγ such that σ(s1) = s2 and, independently, an automorphism τ of tiCγ such that
τ(t1) = t2. Finally, let ρ be the automorphism of ∆Γ which agrees with σ on siCγ and with
τ on tiCγ, and is the identity elsewhere. Then ρ satisfies ρ(s1) = s2 and ρ(t1) = t2. 2

A subset C of a chain A is cofinal in A if for every a ∈ A, there is a c ∈ C such that
c ≥ a (coinitial is defined dually). The cofinality of a chain A is the least cardinal that
embeds cofinally in A ( the coinitiality is defined dually). The cofinality (coinitiality)
is a regular cardinal (if A has a last element, the cofinality of A is 1, and dually for
coinitiality), and it is an isomorphism invariant. If C is cofinal in A, then the cofinality
of C equals that of A (dually for C coinitial). We say that a chain A is C00 or that A has
countable coterminalities if both the cofinality and the coinitiality of A are equal to
ℵ0. Note that this is equivalent to the assertion that there is a coterminal (both coinitial
and cofinal) subset of A isomorphic to Z. We say that a point α ∈ A has countable left
character if {α′ ∈ A ; α′ < α} has countable cofinality, and similarly for right character.
The following remark is useful:

Remark 2.17 Let Γ be a chain, and ∆ a chain with base point 0 ∈ ∆. Assume that 0 is
not an endpoint of ∆. Pick δ′, δ ∈ ∆ such that δ′ < 0 < δ. For each γ ∈ Γ, define s′γ and
sγ ∈ ∆Γ by setting:

s′γ(γ
′) =

{
δ′ if γ′ = γ
0 otherwise.

and sγ(γ
′) =

{
δ if γ′ = γ
0 otherwise.
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Note that the s′γ and sγ have support {γ}, so they belong to ~q Γ∆, where ~q Γ∆ denotes
the subchain of ∆Γ consisting of those sequences with finite support. The maps γ 7→ s′γ
and γ 7→ sγ define embeddings ϕ and ϕ∗ of the chains Γ, respectively Γ∗, in ~q Γ∆.

Moreover we have ϕ(Γ) < {0} < ϕ∗(Γ∗) in ~q Γ∆.

Note that if 0 is an endpoint, the above embeddings do not necessarily exist; for example
if β is an infinite ordinal with base point the least element 0, then 2β∗ is an ordinal in
which β∗ cannot embed.

Proposition 2.18 Let Γ be a chain, and ∆ a chain with base point 0 ∈ ∆. Assume that
0 is not an endpoint of ∆, and that Γ has no least element. Let κ ≥ ℵ0 be the coinitiality
of Γ. Then the cofinality and coinitiality of the lexicographic power ∆Γ are equal to κ.

Proof: Choose s′γ and sγ as in Remark 2.17. By the assumption on Γ, it is easily verified
that {s′γ ; γ ∈ Γ} is coinitial in ∆Γ and has coinitiality κ. Similarly, {sγ ; γ ∈ Γ} is cofinal
in ∆Γ and has cofinality κ. 2

Mostly, we shall consider the special case of Proposition 2.18, when Γ has countable
coinitiality:

Proposition 2.19 Let Γ be a chain, and ∆ a chain with base point 0 ∈ ∆. Then the
lexicographic power ∆Γ is C00 if either Γ has a least element and ∆ is C00, or Γ has
countable coinitiality and 0 is not an endpoint of ∆.

Proof: The conclusion is clear if Γ has a least element, and follows from Proposition
2.18 if Γ has countable coinitiality. 2

Proposition 2.20 Assume that A1 and A2 are C00 chains. Assume that all open intervals
(a, b) of A1 are isomorphic to all those of A2. Then A1 ' A2.

Proof: Patching. 2

Corollary 2.21 Let A be a 2-homogeneous C00 chain. Then A is isomorphic to any of
its convex C00 subsets.

Proof: Let C be a convex C00 subset of A. By convexity, any interval of C is an interval
of A. Since A is 2-homogeneous, the assertion now follows by Proposition 2.20. 2

Note that the condition “countable coterminalities” is necessary in the last two results:
Consider the following two “long rational lines”: let (0,1) be the open rational interval,
and let [0,1) be the half-open rational interval. Let A′ be the lexicographic product

ω1
~q (0, 1) and A = 1 + A′. Let B be the lexicographic product ω1

~q [0, 1). Then each
open interval of A or of B is isomorphic to the rationals. Both A and B have a least
element, and cofinality ℵ1. It can be shown that these two chains are not isomorphic.

A special case of the following theorem appears in [G].

Theorem 2.22 Let Γ be a homogeneous chain of countable coinitiality which is isomor-
phic to one (and hence each) of its open final intervals (γ,∞). Let ∆ be a 2-homogeneous
C00 chain. Then ∆Γ ' ∆1+Γ ' ∆n+Γ for any natural number n.
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Proof: By definition of 2-homogeneity, |∆| > 2 and ∆ has no endpoints, so 0 is not
an endpoint of ∆. Hence, by Proposition 2.19, ∆Γ is C00. By Proposition 2.16, ∆Γ is
2-homogeneous. It follows from Corollary 2.21 that ∆Γ is isomorphic to each of its convex
C00 subsets. Pick any γ ∈ Γ. Then 0Cγ is a convex subset of ∆Γ, and because ∆ is C00,
so is 0Cγ. Therefore, ∆Γ ' 0Cγ. Also, 0Cγ ' ∆1+Γ. Finally, ∆1+Γ ' ∆n+Γ by induction
using Lemma 2.13. 2

Corollary 2.23 RQ ' R1+Q and RR ' R1+R.

Theorem 2.24 RR ' RR+R, and these chains are 2-homogeneous.

Proof: By Lemma 2.13, RR+R ' RR ~qRR. Moreover, RR ' R(−∞,0) (since the
exponents are isomorphic). Also RR ' R1+(0,∞) by Corollary 2.23. Thus RR+R '
R(−∞,0) ~qR1+(0,∞) ' RR, by Corollary 2.14. RR is 2-homogeneous by Proposition 2.16.

2

We mention that the above result remains true if R is replaced by any 2-homogeneous
C00 chain with countable point characters.

3 The chains Rα∗+α

In this section, we shall prove our first main result, Theorem A, that for a countably
infinite ordinal α, Rα∗+α ' Rα. For a lexicographic power ∆Γ1+Γ2 , we shall sometimes
speak of ∆Γ2 as being a convex subset of ∆Γ1+Γ2 . When we do so, we are identifying these
two chains via the map π in the following lemma, the proof of which is obvious.

Lemma 3.1 Let Γ be a chain and ∆ a chain with base point 0, and let Φ 6= ∅ be a final
segment of Γ. Let π : ∆Φ → ∆Γ be defined by (π(s))(γ) = s(γ) if γ ∈ Φ, and (π(s))(γ) = 0
otherwise. Then π is an isomorphism onto a convex subset of ∆Γ, and π(0) = 0.

Note that the converse fails; a convex subset of ∆Γ need not be isomorphic to a ∆Φ.
The following lemma, two theorems and corollary, remain valid if R is replaced by any
2-homogeneous C00 chain.

Lemma 3.2 Rω∗+ω ' Rω, and these chains are 2-homogeneous.

Proof: Rω is convex in Rω∗+ω by Lemma 3.1, and both are C00 chains by Proposition 2.19.
By Proposition 2.16, Rω∗+ω is a 2-homogeneous chain. So again Corollary 2.21 applies.

2

Theorem 3.3 Let α be a countable ordinal. Then Rα∗+ω ' Rω and these chains are
2-homogeneous.

Proof: Note that Rω is 2-homogeneous by Lemma 3.2. We prove that Rα∗+ω ' Rω

by induction on α. For α finite the assertion is clear. Suppose that the assertion is
true for α. Then R(α+1)∗+ω ' R1+α∗+ω ' R1+ω ' Rω, by the induction hypothesis and
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Corollary 2.14 . Suppose now that α is a limit ordinal. It suffices to show that Rα∗+ω is 2-
homogeneous. Indeed once this is established, we can argue as in Lemma 3.2 to prove the
main assertion (observe that Rα∗+ω has countable coterminalities since α is countable).
Let s1, s2, s3, s4 ∈ Rα∗+ω be given such that s1 < s2 and s3 < s4. There exists an ordinal
β < α such that s1, s2, s3, s4 ∈ Rβ∗+ω. By induction, Rβ∗+ω is 2-homogeneous, so there
exists an automorphism of this chain mapping s1 to s3 and s2 to s4. Since Rβ∗+ω is convex
in Rα∗+ω (by Lemma 3.1), any automorphism of Rβ∗+ω extends to an automorphism of
Rα∗+ω. So Rα∗+ω is 2-homogeneous as required. 2

The following theorem implies Theorem A:

Theorem 3.4 Let α and β be ordinals, with α countable and β infinite. Then Rα∗+β '
Rβ.

Proof: Write β = ω + γ for some ordinal γ. Then Rα∗+β = Rα∗+ω+γ ' Rω+γ = Rβ (by
Theorem 3.3 and Corollary 2.14). 2

In view of Theorem 3.4 and Corollary 1.3 we have

Corollary 3.5 Let α be a countably infinite, additive principal ordinal. Then Rα∗+α is a
2-homogeneous chain.

The converse of Corollary 3.5 is also true, as we shall prove later (see Corollary 4.6).

Corollary 3.6 Rω∗1+ω1 is a 2-homogeneous chain.

Proof: For each countable ordinal α, the set α∗ + ω1 is a final segment of ω∗1 + ω1. If
we let

∆α = {s ∈ Rω∗1+ω1 ; dif(s,0) ∈ α∗ + ω1},
then ∆α ' Rα∗+ω1 and for α < β < ω1, ∆α ⊆ ∆β. Also,

Rω∗1+ω1 =
⋃

α<ω1

∆α.

By the theorem each ∆α ' Rω1 , and so by Corollary 1.3 ∆α is 2-homogeneous. Since any
automorphism of the convex subset ∆α can clearly be extended to an automorphism of
Rω∗1+ω1 , the corollary follows. 2

Theorems A, 3.3, and 3.4 are not true without the assumption of countability:

Example 3.7 Let κ be an uncountable regular cardinal. Then Rκ∗+κ and Rκ are not
isomorphic. Indeed Rκ is C00 by Proposition 2.19, whereas Rκ∗+κ has cofinality κ by
Proposition 2.18.

Example 3.8 In Theorem 3.3, Rα itself need not be 2-homogeneous, even for countable
α: In Rω+1, each element is contained in a convex copy of R (consisting of those elements
agreeing with it except in the last place) which has neither an infimum nor a supremum
in Rω+1. Hence Rω+1 is not 2-homogeneous.

In fact, stronger results hold: we can prove the converses to Corollary 1.3 and Corollary
3.5 (see Theorem 4.5 and Corollary 4.6).
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4 Nonisomorphism of lexicographic powers.

Theorem 1.5 and Corollary 1.6 provide tools for establishing nonisomorphism of lexico-
graphic powers RΓ with base R, as Corollary 4.3 will show. The next Lemma ([K2; Lemma
4.9]) is the analogue to Lemma 2.4:

Lemma 4.1 Let Γ and Γ′ be chains and ∆ a chain with base point 0. Suppose that
ϕ : Γ → Γ′ is an embedding. Then ϕ lifts to an embedding

ϕ̂ : ∆Γ → ∆Γ′

such that ϕ̂ takes the base (constant 0) function of ∆Γ to the base function of ∆Γ′; namely,
(ϕ̂(s))(γ′) = 0 if γ′ 6∈ ϕ(Γ), and (ϕ̂(s))(ϕ(γ)) = s(γ) otherwise. Moreover ϕ̂ is onto if
and only if ϕ is.

In her dissertation [W, Theorem 3.1], Pam Warton shows that Corollary 1.6 holds even if
one drops the condition on J . However, the condition on J is necessary for the conclusion
of Theorem 1.5 as the following example shows.

Example 4.2 In [K–K–S2] there was constructed a chain Γ such that R embeds in Γ,
and (RΓ)≤0 ' Γ (here (RΓ)≤0 denotes the closed initial segment of RΓ determined by 0).
Let J be the chain obtained by deleting the last element of Γ. Then by Lemma 4.1 (RJ)<0

embeds in (RΓ)<0 ' J . Moreover, the map s 7→ −s from (RΓ)<0 to (RΓ)>0 defined by
(−s)(γ) = −(s(γ)) is an order-reversing bijection. Therefore, (RΓ)>0 ' ((RΓ)<0)∗ ' J∗.
Now we have

RJ = (RJ)<0 + {0}+ (RJ)>0 .

Thus RJ embeds in J + {0} + J∗. By Remark 2.17, it follows that RJ embeds in ~q JR.
But J contains an infinite wellordered subset α, and Rα embeds in RJ (by Lemma 4.1),

and hence in ~q JR. This violates the conclusion of Theorem 1.5 because the elements of
~q JR have finite support.

We now apply Corollary 1.6 and its improvement in [W], along with Lemma 4.1. If Γ is
a chain we define the following set of ordinals:

wo(Γ) = {α ; α is the order type of some wellordered subset of Γ}.

Corollary 4.3 Let Γ1 and Γ2 be arbitrary chains. If RΓ1 embeds in RΓ2 then wo(Γ1) ⊂
wo(Γ2). Consequently:
(1) If RQ embeds in some RΓ, then all countable ordinals embed in Γ, and in particular
Γ cannot be of the form β∗ + δ, with β and δ ordinals and δ countable.

(2) If Rα embeds in RR for some ordinal α, then α must be countable.

Example 4.4 We observed in Lemma 3.2 that Rω∗+ω ' Rω. However the correspond-
ing anti-lexicographic powers are not isomorphic. If they were, then we would have by
Proposition 2.2 that Rω∗+ω ' Rω∗ , so Rω ' Rω∗ . But this is impossible by Corollary 4.3
since ω does not embed in ω∗.
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We have the promised converse of Theorem 1.3 :

Theorem 4.5 Let α be an ordinal such that Rα is 2-homogeneous. Then α is additive
principal.

Proof: Assume that α 6= 1. Let ϕ be a nonempty final segment of α. Both Rα and
Rϕ are C00 by Proposition 2.19, and Rϕ is convex by Lemma 3.1. So by Corollary 2.21
Rα ' Rϕ. So α ' ϕ by Corollary 1.6, this shows that α is self final as required. 2

In view of Theorem 3.4, we have the converse of Corollary 3.5:

Corollary 4.6 Let α be a countably infinite ordinal. Assume that Rα∗+α is a 2-homogeneous
chain. Then α is additive principal.

5 RR is not isomorphic to RQ

Let us first recall some definitions and facts. Let A be a totally ordered set. Let X, Y
be subsets of A. We write X < Y if x < y for all x ∈ X and y ∈ Y . A Dedekind
cut in A is a pair (X, Y ) of disjoint nonempty convex subsets of A whose union is A and
X < Y . A Dedekind cut is a gap or a hole in A if X has no last element and Y has no
first element, and is a jump if X has a last element and Y has a first element. A dense
ordering has no jumps. A is said to be Dedekind complete if there are no gaps in A.
For example, R is Dedekind complete. We denote by A the Dedekind completion of a
chain A.

Certainly RR and RQ are 2-homogeneous (by 2.16) and C00 (by 2.19). However, the above
techniques do not enable us to determine whether RR ' RQ. This section is devoted to
the proof of the following theorem and corollary:

Theorem 5.1 Let ∆ and Γ be Dedekind complete ordered sets and let ∆ have no end-
points. Let ∆′ be any ordered set, and let Γ′ be a countable ordered set which is dense in
itself. Then ∆Γ 6' (∆′)Γ′ .

Corollary 5.2 RR 6' RQ.

Let 0′ ∈ ∆′ be the chosen base point, and 0′ ∈ (∆′)Γ′ the corresponding base function.
The proof of the theorem begins by noting that the set (∆′)Γ′ has a natural partition into
convex subsets, which we will call cells, where two elements g, h belong to the same cell
iff dif(g,0′) = dif(h,0′) and either g, h < 0′ or g, h > 0′. The element 0′ constitutes a
cell by itself. Then the collection of cells is a countably infinite ordered set which, with
respect to its naturally induced order, is dense in itself. We will show that ∆Γ has no
such partition.

The neighborhood corresponding to a pair (a, γ) ∈ ∆Γ × Γ is

Na,γ = aCγ = {d ∈ ∆Γ; dif(a, d) > γ}.
The definition of the lexicographic power implies that if Na1,γ1 ⊇ Na2,γ2 ⊇ . . . is a tower
of neighborhoods, then

⋂
Nai,γi

6= ∅.

13



Let C = {C1, C2, . . .} be a countably infinite convex partition of ∆Γ such that in its
natural order, C is dense in itself. We will obtain a contradiction. Our procedure will be
to define inductively a tower of neighborhoods Na1,γ1 ⊇ Na2,γ2 ⊇ . . . such that for each
i, Nai,γi

∩ Ci = ∅. Then any point of the intersection of the tower will be outside all the
cells of C.

Since ∆ and Γ are both Dedekind complete, whereas C is isomorphic to an interval of Q,
we have:

Lemma 5.3 There is no order-preserving map from an interval of ∆ or of Γ onto any
non-trivial interval of C.

We will invoke Lemma 5.3 twice in the proof of Lemma 5.4 below, once for ∆ and once for
Γ. Lemma 5.4 will enable us to construct, inductively, a nested sequence of neighborhoods
Nai,γi

whose nonvoid intersection misses each of the cells in C. The first conclusion of the
lemma allows us to eliminate, successively, each of the cells. The second insures that none
of our neighborhoods is trapped entirely within one cell (which would otherwise make it
impossible to eventually eliminate that cell).

Lemma 5.4 Let ∆ and Γ be Dedekind complete ordered sets and let ∆ have no endpoints.
Let C be a countably infinite convex partition of ∆Γ such that C is dense in itself in the
natural order. Let C ∈ C. Then there exists a neighborhood Na,γ and two distinct elements
A,B ∈ C such that

(i) Na,γ ∩ C = ∅, while
(ii) Na,γ ∩ A 6= ∅ 6= Na,γ ∩B.

Proof of Theorem 5.1, using Lemma 5.4. Let C = {C1, C2, . . .} be a countably
infinite convex partition of ∆Γ which is dense in itself. We will arrive at a contradiction.
By Lemma 5.4, there exists a neighborhood Na1,γ1 and distinct A1, B1 ∈ C such that
C1 ∩ Na1,γ1 = ∅ and A1 ∩ Na1,γ1 6= ∅ 6= B1 ∩ Na1,γ1 . By induction, suppose we have
neighborhoods Na1,γ1 ⊇ Na2,γ2 ⊇ . . . ⊇ Nan,γn and A1, B1, A2, B2, . . . , An, Bn ∈ C such
that for each i, Ci ∩ Nai,γi

= ∅ and Ai ∩ Nai,γi
6= ∅ 6= Bi ∩ Nai,γi

, and Ai 6= Bi. If
Cn+1 ∩ Nan,γn = ∅, then letting Nan+1,γn+1 = Nan,γn , An+1 = An, and Bn+1 = Bn, we
achieve the induction step. But if Cn+1 ∩Nan,γn 6= ∅, then

C := Cn+1 ∩Nan,γn ∈ Cn,

where
Cn := {Ci ∩Nan,γn ; Ci ∈ C and Ci ∩Nan,γn 6= ∅}.

Since Cn+1 ∩ Nan,γn 6= ∅, then Nan,γn 6= ∅, and so (γn,∞) 6= ∅. Thus (see 3.1), we
can identify the neighorhood Nan,γn with ∆(γn,∞), and with this identification, if N is a
neighborhood of ∆Γ such that N is properly contained in Nan,γn , then N is a neighborhood
of ∆(γn,∞), and conversely. Clearly, (γn,∞) is a Dedekind complete set. We show that Cn

is a partition of ∆(γn,∞) satisfying the hypotheses of Lemma 5.4 for ∆(γn,∞). First, Cn is
countably infinite since Nan,γn meets at least two different members of C and C is dense
in itself. The other hypotheses are obviously satisfied. From Lemma 5.4, there exists a
neighborhood Nan+1,γn+1 ⊆ Nan,γn and distinct cells

A∗
n+1 = An+1 ∩Nan,γn , B∗

n+1 = Bn+1 ∩Nan,γn ∈ Cn
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such that

∅ = C ∩Nan+1,γn+1 = Cn+1 ∩Nan,γn ∩Nan+1,γn+1 = Cn+1 ∩Nan+1,γn+1

and
A∗

n+1 ∩Nan+1,γn+1 6= ∅ 6= B∗
n+1 ∩Nan+1,γn+1 .

Hence,
An+1 ∩Nan+1,γn+1 6= ∅ 6= Bn+1 ∩Nan+1,γn+1

and An+1 6= Bn+1. The induction step is complete. Finally, since
⋂

Nai,γi
6= ∅, let

a ∈ ⋂
Nai,γi

. Then a 6∈ ⋃
Ci, contradicting the assumption that C covers ∆Γ.

Proof of Lemma 5.4. The dual ∆∗ of ∆ is also Dedekind complete and has no minimum
or maximal elements. The identity map from ∆Γ to ∆∗Γ reverses order, hence preserves
convexity and the density of C, and preserves neighborhoods. Thus, we may assume that
C is not the smallest member of C; otherwise, we deal with ∆∗Γ in which C is certainly
not the smallest element, as C is infinite.

We can now choose C ′, C ′′ ∈ C with C ′ < C ′′ < C. Let g ∈ C ′,m ∈ C ′′, and let
τ = dif(g,m). Then using the fact that ∆ has no minimum element,

[τ,∞) = {dif(a,m); g ≤ a < m} ⊆ Γ.

Suppose (falsely, as we shall see) that for each σ ≥ τ ∈ Γ, there is Aσ ∈ C such that

Pσ := {a ∈ ∆Γ; g ≤ a < m and dif(a, m) = σ} ⊆ Aσ.

We note that Pσ 6= ∅, and hence for each σ, Aσ is unique. Then we have a mapping
φ : [τ,∞) → C defined by φ(σ) = Aσ. We will get a contradiction to Lemma 5.3 by
showing that φ preserves order and has a non-trivial interval of C in its image. The
image φ([τ,∞)) contains the non-trivial interval (C ′, C ′′) of C, for if C ′ < T < C ′′ and
T ∈ C, let t ∈ T . Then g < t < m, so dif(t,m) ≥ τ and T = φ(dif(t,m)). Moreover,
φ preserves order because if τ ≤ σ1 < σ2 ∈ Γ and dif(si,m) = σi with g ≤ si < m,
then s1(σ1) < m(σ1) = s2(σ1), but for all σ′ < σ1 ∈ Γ, s1(σ

′) = m(σ′) = s2(σ
′). Hence,

s1 < s2. And as si ∈ Pσi
⊆ Aσi

, we have Aσ1 ≤ Aσ2 . Thus, φ is an order-preserving
map of [τ,∞) ⊆ Γ whose image contains the non-trivial interval (C ′, C ′′) of C. We have
a contradiction to Lemma 5.3. Therefore, our assumption about the existence of Aσ is
wrong. Therefore, for some σ ≥ τ ∈ Γ, the set Pσ meets more than one member of C. For
such a σ, and for each x < m(σ) ∈ ∆, let

Pσ,x := {a ∈ ∆Γ; dif(a,m) = σ and a(σ) = x}.

If σ > τ then g ≤ a for all a ∈ Pσ,x, and Pσ,x ⊆ Pσ; this is not the case when σ = τ .
Suppose (again falsely, as we shall see) that for each x < m(σ) ∈ ∆, there is Bx ∈ C such
that Pσ,x ⊆ Bx. We note that Pσ,x 6= ∅, and hence for each such x, Bx is unique. Then
(−∞,m(σ)) ⊆ ∆ and we have a mapping ψ : (−∞,m(σ)) → C defined by ψ(x) = Bx.
We will again derive a contradiction to Lemma 5.3 by showing that ψ preserves order and
has a non-trivial interval in its image. If x1 < x2 < m(σ), and ri ∈ Pσ,xi

, then r1 < r2

15



and since ri ∈ Bxi
, we must have ψ(x1) = Bx1 ≤ Bx2 = ψ(x2). Hence ψ preserves order.

To see that the image of ψ contains a non-trivial interval, we know that Pσ meets more
than one member of C. Let us suppose that K1, K2 ∈ C, K1 ∩ Pσ 6= ∅ 6= K2 ∩ Pσ, and
K1 < K2. We show that the interval (K1, K2) ⊆ C is contained in the image of ψ. Let
T ∈ C and K1 < T < K2. Choose t ∈ T and ki ∈ Ki ∩ Pσ. Then g ≤ k1 < t < k2 < m,
and k1(σ) ≤ t(σ) ≤ k2(σ) < m(σ). It follows that dif(t,m) = σ, and so ψ(t(σ)) = T .
As before, we have a contradiction to Lemma 5.3. Therefore, our assumption about the
existence of Bx is wrong, and so there must exist x < m(σ) such that Pσ,x meets two
distinct members A,B ∈ C. Choose any a′ ∈ Pσ,x and let a = a′|(−∞,σ]. Then Pσ,x = Na,σ.
Hence Na,σ∩A 6= ∅ 6= Na,σ∩B. Moreover, since Na,σ < m < C, then Na,σ∩C = ∅. Thus,
Lemma 5.4 is proved.

6 The chains ∆R

This section is devoted to the proof of the following theorem:

Theorem 6.1 Let ∆ be a countable ordinal ≥ 2, with its least element 0 as base point.
Then ∆R (with its minimum element deleted) is 2-homogeneous.

Throughout the section, ∆ will denote a countable ordinal ≥ 2 (with base
point 0). For γ ∈ R, we remind the reader of the equivalence relations Cγ and Cγ on ∆R

defined just prior to 2.16.

For s ∈ ∆R, γ ∈ R and δ ∈ ∆ define an element sγδ by setting

sγδ(γ
′) =





s(γ′) if γ′ < γ
δ if γ′ = γ
0 otherwise.

The following is clear.

Proposition 6.2 For each s ∈ ∆R and γ ∈ R, sCγ =
∑

δ∈∆ sγδCγ ' ∆1+(γ,∞), sCγ ' ∆R,

and sCγ ' ∆ ~q∆R.

Below, Φ denotes ∆R, which has a minimum (namely 0) but no maximum. For s ∈ Φ,
s+ denotes {t ∈ Φ ; t > s}, and dually for s−. ◦Φ denotes Φ with 0 deleted. (But all
references to Cγ-classes and Cγ-classes will be to congruences of Φ rather than of ◦Φ, and
similarly for s+ and s−.) Each class sCγ ' Φ.

The plan of the proof of Theorem 6.1 is to show that for s ∈ Φ with s 6= 0, s− and s+ are
both independent (up to isomorphism) of the choice of s, which will give 1-homogeneity
for ◦Φ. Indeed, it will turn out that each s− ' Φ and each s+ ' ◦Φ. Then 2-homogeneity
will follow easily.

Since the base point 0 is the minimum element of ∆ we have:

Lemma 6.3 For t, s ∈ Φ:

(1) If t < s, then dif(t, s) ∈ support (s).

(2) If γ1 < γ2 ∈ support (s), then sγ10Cγ1 < sγ20Cγ2.
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Proposition 6.4 Φ + Φ ' Φ.

Proof: Let s be the characteristic function of N ⊂ R defined by

s(γ) =

{
1 for γ ∈ N ⊂ R,
0 otherwise.

We first claim that s− ' ω ~qΦ. Then support (s) = N. Each γ ∈ N makes a contribution
Ψγ to s− consisting of those t ∈ Φ such that dif(t, s) = γ and t(γ) < s(γ) (so that
t(γ) = 0); and γ1 < γ2 ∈ N implies Ψγ1 < Ψγ2 . (See Lemma 6.3.) That is,

s− =
∑

γ∈N
Ψγ =

∑

γ∈N
sγ0Cγ.

Hence
Φ = s− + {s}+ s+ ' (ω ~qΦ) + {s}+ s+.

Now

Φ + Φ ' Φ + (ω ~qΦ) + {s}+ s+ ' (1 + ω) ~qΦ + {s}+ s+ ' (ω ~qΦ) + {s}+ s+ ' Φ.

2

Lemma 6.5 The orbits of Aut(Φ) are coterminal in ◦Φ (except for {0}).
Proof: For γ ∈ R let 1γ denote the characteristic function of {γ}:

1γ(γ
′) =

{
1 if γ′ = γ,
0 otherwise.

Let γ1, γ2 ∈ R, and σ ∈ Aut(R) such that σ(γ1) = γ2. By Lemma 4.1, σ lifts to an
automorphism σ̂ ∈ Aut(Φ) satisfying σ̂(1γ1) = 1γ2 . Hence the set {1γ ; γ ∈ R}, which is
coterminal in ◦Φ, is contained in a single orbit of Aut(Φ). Therefore every orbit of Aut(Φ)
is coterminal in ◦Φ (except for {0}). 2

Lemma 6.6 ω ~qΦ ' Φ and ω∗ ~qΦ ' ◦Φ.

Proof: We prove the first statement, the proof of the second being similar. Fix two
isomorphic copies Φ1 and Φ2 of Φ. By Proposition 6.4, Φ1 + Φ2 ' Φ. We see from this
and Lemma 6.5 that for any t ∈ Φ, there exists an isomorphism ψ : Φ1 +Φ2 ' Φ such that
t ∈ ψ(Φ1). (Follow any isomorphism from Φ1 + Φ2 to Φ by an appropriate automorphism
of Φ.)

Since Φ has cofinality ℵ0, this observation enables us to lay out in Φ a convex partition
whose cells are copies of Φ and for which the ordered set of cells is isomorphic to ω. This is
done as follows. Let {ti}i∈ω be a strictly increasing cofinal subset of Φ. By the discussion
above, we have an isomorphism ψ0 : Φ1 + Φ2 ' Φ such that t0 < ψ0(Φ2). Proceeding by
induction, suppose for each i = 0, 1, 2, . . . , n we have isomorphisms ψi : Φ1 ' ψi(Φ1) ⊆ Φ
such that Kn := ψ0(Φ1) + ψ2(Φ1) + · · ·+ ψn(Φ1) is an initial segment of Φ, Φ = Kn + K∗

n,
K∗

n ' Φ, and tn < K∗
n. Then there is an isomorphism ψn+1 : Φ1 ' ψn+1(Φ1) ⊆ K∗

n such

that tn+1 < ψn+1(Φ2). Then ∩nK
∗
n = ∅, and so Φ = ψ0(Φ1) + ψ1(Φ1) + · · · ' ω ~qΦ. 2
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Lemma 6.7 For all countable ordinals τ 6= 0, τ ~qΦ ' Φ.

Proof: If τ is finite, τ ~qΦ ' Φ by Proposition 6.4. Suppose now that τ is infinite. Write
τ =

∑
i∈I τi + p, where I ' ω, 0 6= τi < τ for each i ∈ I, and p is finite. By induction, and

with the aid of Lemma 6.6,

τ ~qΦ ' ((
∑

i∈I

τi) + p) ~qΦ ' ∑

i∈I

(τi
~qΦ) + p ~qΦ ' ∑

i∈I

Φ + p ~qΦ

' ω ~qΦ + p ~qΦ ' Φ + p ~qΦ ' Φ.

2

As promised, we have

Proposition 6.8 For each s ∈ Φ (except for s = 0), s− ' Φ.

Proof: The proof parallels closely that of Proposition 6.4. Let s ∈ Φ with s 6= 0. Then
support (s) is a nonempty countable wellordered subset of R, and we denote it by I. As
in 6.4, each γ ∈ I makes a contribution Ψγ to s− consisting of those t ∈ Φ such that
dif(t, s) = γ and t(γ) < s(γ). We have

s− =
∑

γ∈I

Ψγ =
∑

γ∈I

(
∑

δ<s(γ)

sγδCγ) '
∑

γ∈I

(
∑

δ<s(γ)

Φ) ' ∑

γ∈I

Φ ' Φ ,

where the last two steps follow from Lemma 6.7 since ∆ and I are countable. 2

Now we turn to s+, with ◦Φ ~qΦ (which will turn out to be isomorphic to ◦Φ) playing the
role played for s− by Φ. The next two results are consequences of Lemma 6.7.

Corollary 6.9 Each Cγ-class (as well as each Cγ-class) is isomorphic to Φ.

Lemma 6.10 ∆R
<0 ~q∆ ~q∆R

>0 ' Φ ~q∆ ~qΦ ' Φ ~qΦ.

Proposition 6.11 Φ ~qΦ ' Φ.

Proof: By Lemma 6.10 Φ ~qΦ ' ∆R
<0 ~q∆ ~q∆R

>0 ' ∆R = Φ. 2

Corollary 6.12 Φ + (◦Φ ~qΦ) ' Φ.

Proof: Since Φ ~qΦ ' Φ, then ({0}+ ◦Φ) ~qΦ ' Φ, so ({0} ~qΦ) + (◦Φ ~qΦ) ' Φ. 2

Corollary 6.13 ◦Φ + (◦Φ ~qΦ) ' ◦Φ.

Corollary 6.14 ω∗ ~q (◦Φ ~qΦ) ' ◦Φ.

Proof: Since ◦Φ has countable coinitiality and the orbits of Aut(◦Φ) are coinitial in ◦Φ,
the proof of this corollary is almost identical to that of Lemma 6.6, using Corollary 6.13
instead of Lemma 6.4. 2
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Corollary 6.15 ◦Φ ~qΦ + ◦Φ ~qΦ ' ◦Φ ~qΦ.

Proof: By Proposition 6.4 Φ + Φ ' Φ. Lexing by ◦Φ establishes the result. 2

Corollary 6.16 ω∗ ~q (◦Φ ~qΦ) ' ◦Φ ~qΦ.

Proof: The proof parallels that of Corollary 6.14, using Corollary 6.15 instead of
Corollary 6.13. Coinitiality of orbits holds for Aut(◦Φ ~qΦ) since it holds for Aut(◦Φ). 2

Lemma 6.17 ◦Φ ~qΦ ' ◦Φ.

Proof: This follows from Corollary 6.16 and Corollary 6.14. 2

Corollary 6.12 and Lemma 6.17 yield

Proposition 6.18 Φ + ◦Φ ' Φ.

Corollary 6.19 ◦Φ + ◦Φ ' ◦Φ.

In parallel with Lemma 6.7 we have

Lemma 6.20 For all countable ordinals τ 6= 0,

τ ∗ ~qΦ '
{

Φ if τ is a successor ordinal,
◦Φ if τ is a limit ordinal.

This remains true even if the local copies of Φ are replaced by copies of ◦Φ throughout an
arbitrary subset of the index chain τ ∗ (except that if τ ∗ has a smallest element and the
smallest copy of Φ is replaced by ◦Φ, the result is isomorphic to ◦Φ).

Proof: We prove the special case first. If τ is finite, τ ∗ ~qΦ ' Φ by Proposition 6.4.
Suppose now that τ is infinite. Write τ =

∑
i∈I τi + p, where I ' ω, 0 6= τi < τ for each

i ∈ I and each τi is a successor ordinal, and p is finite. By induction on τ , and with the
aid of Lemma 6.6 and Proposition 6.18,

τ ∗ ~qΦ ' ((
∑

i∈I

τi) + p)∗ ~qΦ ' p∗ ~qΦ +
∑

i∈I∗
τ ∗i ~qΦ ' p∗ ~qΦ +

∑

i∈I∗
Φ

' p∗ ~qΦ + ω∗ ~qΦ ' p∗ ~qΦ + ◦Φ '
{

Φ if p 6= 0,
◦Φ if p = 0.

To deduce the more general assertion from the special case, we explain how to obtain an
isomorphism from τ ∗ ~qΦ onto its modification. Decompose each local copy of Φ as the
sum Φ = Φ′ + Φ′′ of two copies of Φ. Then given any sum Φ1 + Φ2 of consecutive local
copies of Φ in τ ∗ ~qΦ, we have Φ1 + Φ2 ' Φ′

1 + (Φ′′
1 + Φ′

2) + Φ′′
2 ' Φ′

1 + (Φ′′
1 + ◦Φ′

2) +
Φ′′

2 (by Propositions 6.18 and 6.15) ' Φ1 + ◦Φ2 ; and indeed via an isomorphism which
is the identity on Φ′

1 ∪Φ′′
2, which permits the isomorphisms for the various sums Φ1 + Φ2

to be spliced together. 2

Again as promised, we have
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Proposition 6.21 For each s ∈ Φ, s+ ' ◦Φ.

Proof: The proof parallels that of Proposition 6.8, but with some twists. Let s ∈ Φ.
We may assume s 6= 0 since if s = 0 then s+ = ◦Φ by definition. Let I = support (s).
As in Proposition 6.8 , each γ ∈ I makes a contribution Ψγ = Ψ′

γ + Ψ′′
γ (to be described

below) to s+, and
s+ ' Ψ∞ +

∑

γ∈I∗
Ψγ ,

where the extra term Ψ∞ will also be described below.

We now describe Ψγ. Its first term Ψ′
γ consists of those t ∈ Φ such that dif(t, s) = γ and

t(γ) > s(γ). Its second term Ψ′′
γ consists of those t ∈ Φ such that dif(t, s) is slightly less

than γ, in the following sense:

(1) If γ has an immediate predecessor β in I, dif(t, s) ∈ (β, γ) ⊂ R.

(2) If γ = min I, dif(t, s) ∈ (−∞, γ).

(3) If {η ∈ I ; η < γ} has no largest element, and if β is its supremum in R, then

(a) If β < γ, dif(t, s) is to be in [β, γ).

(b) If β = γ, Ψ′′
γ = ∅.

Observe that Ψ′
γ < Ψ′′

γ since ∆R is ordered lexicographically from the left. Similarly
γ1 < γ2 ∈ I implies Ψγ2 < Ψγ1 . This is why in writing s+ ' Ψ∞ +

∑
γ∈I∗ Ψγ , the

summation is over I∗, not I.

Finally, Ψ∞ consists of those t ∈ Φ such that dif(t, s) > I:

(1) If I has a largest element β, dif(t, s) ∈ (β,∞).

(2) If I has no largest element, then

(a) If I is not cofinal in R and β = sup I, dif(t, s) ∈ [β,∞).

(b) If I is cofinal in R, Ψ∞ = ∅.
Then Ψ∞ < Ψγ for all γ.

Since s+ is partitioned by Ψ∞ and the Ψγ ’ s, we have

s+ = Ψ∞ +
∑

γ∈I∗
Ψγ = Ψ∞ +

∑

γ∈I∗
(Ψ′

γ + Ψ′′
γ) .

Now we write ∆γ := {δ ∈ ∆ ; δ > s(γ)}. Then by Corollary 6.9

Ψ′
γ ' ∆γ ~q∆(γ,∞) ' ∆γ ~qΦ ' Φ

(unless s(γ) is the maximum element of ∆, in which case Ψ′
γ = ∅).

Using Corollary 6.9 and Lemma 6.17, and with reference to the several cases in the above
description of Ψ′′

γ, we get

Ψ′′
γ '





◦(∆(β,γ)) ~q∆R
≥γ ' ◦Φ ~qΦ ' ◦Φ in case (1) ,

◦(∆R
<γ

) ~q∆R
≥γ ' ◦Φ ~qΦ ' ◦Φ in case (2) ,

◦(∆[β,γ)) ~q∆R
≥γ ' ◦(∆R

≥β

) ~qΦ ' ◦Φ ~qΦ ' ◦Φ in case (3a) ,
∅ in case (3b) .
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Thus in each case, Ψ′′
γ ' ◦Φ or Ψ′′

γ ' ∅.
Since Φ + ◦Φ ' Φ by Proposition 6.18, we have for each γ that Ψγ is isomorphic to Φ
or ◦Φ or ∅. Moreover, since Ψγ = ∅ is possible only in case (3b) of Ψ′′

γ, which forces γ
to correspond to a limit ordinal in I, we may assume that Ψγ is isomorphic to Φ or ◦Φ
(replacing I by {γ ∈ I ; Ψγ 6= ∅}).
An analysis similar to that for Ψ′′

γ shows that either Ψ∞ = ∅ (if I is cofinal in R), or
Ψ∞ ' ◦Φ.

Putting all this together, we have

s+ ' Ψ∞ +
∑

γ∈I∗
Ψγ ' ◦Φ +

∑

γ∈I∗
Ψγ,

where the first term ◦Φ is missing if and only if I is cofinal in R, and where for each γ,
Ψγ ' Φ or Ψγ ' ◦Φ. Then Lemma 6.20 guarantees that s+ ' ◦Φ in all cases; for if the
first term ◦Φ is missing, then I is cofinal in R and thus has no largest element, so that I∗

has no smallest element, making
∑

γ∈I∗ Ψγ ' ◦Φ. 2

We can now prove Theorem 6.1.
Proof: The homogeneity of ◦Φ follows from Propostions 6.8 and 6.21. 2-homogeneity
then follows from the fact that all open intervals (s, t) of ◦Φ are isomorphic, which holds
because always s+ ' ◦Φ and then (s, t) ' ◦Φ by an application of Proposition 6.8 to
t ∈ s+. 2

Example 6.22 Theorem 6.1 is not true without the countability hypothesis on ∆: let
∆ = ω1 + 1. The last element of ∆ has uncountable left character. For δ ∈ ∆, define
sδ ∈ ∆R by setting

sδ(γ) =

{
δ if γ = 0,
0 otherwise.

For δ limit ordinal, the left character of sδ in ∆R coincides with the left charater of δ in
∆. Hence ∆R has points of uncountable (and also countable) left characters, and hence
◦∆R cannot be homogeneous, much less 2-homogeneous.

The following problems arise:

Problem 1 : We do not know how many different chains we are talking about in Theorem
6.1. That is, we do not know when two such lexicographic powers are isomorphic (for
different countable ordinals ∆) – possibly always.

Problem 2 : If ∆ = n is finite, then by Corollary 2.5 ∆R ' (∆R)∗, with left hand side
computed in base 0, and right hand side computed in base n−1. So ∆R (with its maximum
element deleted) computed in base n− 1 is 2-homogeneous as well.
But in general, we do not know whether Theorem 6.1 is true if the chosen base point is
not the least element 0 of ∆.

Closely related to Problem 2 are the following.

Problem 3 : For ∆ as in Theorem 6.1, we do not know whether the lexicographic pow-
ers computed in different base points yield isomorphic chains (after their endpoints are
deleted).
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Problem 4 : We do not know whether the 2-homogeneous chains ∆R appearing in Theorem
6.1 (computed in base 0) are symmetric (after their minimum elements are deleted).
Note that a positive solution for the special case ∆ = n finite requires proving that ∆R

computed in base 0 is isomorphic to ∆R computed in base n− 1 (after the endpoints are
deleted).

In [H1] and [H2] Hausdorff was interested in coterminalities and in characters of points
and holes in lexicographic powers. (The characters of a hole s in a chain A are those of
s considered as a point in A). In the present paper, point and hole characters have been
barely mentioned. This is because in most cases that we considered, all characters and
coterminalities are at most countable. (This is due to the well known fact, not difficult
to show, that if ∆ and Γ both have all characters and coterminalities at most countable,
then so does ∆Γ; see Proposition 2.19 ). This produces the following slightly stronger
conclusion for Theorem 6.1, also of interest to Hausdorff. Below, X := ◦(∆R).

Proposition 6.23 Assume the hypothesis of Theorem 6.1. Then all open intervals of X,
with endpoints now permitted to come from X ∪ {+∞,−∞}, are isomorphic. Also the
holes of X form a single orbit in the action of Aut(X) on X, and X is 2-homogeneous.

Proof: Patching (cf. Proposition 2.20), which works because X is 2-homogeneous and
all its characters and coterminalities are countable. To say that the holes of X form a
single orbit, we need to show that there are holes; this is addressed below. 2

Under the hypothesis of Theorem 6.1, ∆R is never Dedekind complete - the Cγ-classes
do not have suprema in ∆R. (In fact, the suprema are the only holes in ∆R, but we omit
the proof).

Problem 5 : Is X \X ' X?

Example 6.24 The chain (ω1 + 1)R considered in Example 6.22 cannot be isomorphic
to any ∆R satisfying the hypothesis of Theorem 6.1, due to the discrepancies in point
characters (alternately, to discrepancies in 2-homogeneity). Moreover ωR1 is isomorphic to
neither since its points all have at most countable characters, but it does have holes of
uncountable left character (the suprema of Cγ-classes).
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