NSM2006 Nonstandard Methods Congress, Pisa May 25-31, 2006.

June 6, 2006

Salma Kuhlmann¹ Research Center for Algebra, Logic and Computation University of Saskatchewan, McLean Hall, 106 Wiggins Road, Saskatoon, SK S7N 5E6, Canada email: skuhlman@math.usask.ca homepage: http://math.usask.ca/~skuhlman/index.html

The slides of this talk are available at: http://math.usask.ca/~skuhlman/slidekbd.pdf

 $^{^1\}mathrm{Partially}$ supported by the Natural Sciences and Engineering Research Council of Canada.

κ -bounded Exponential-Logarithmic Power Series Fields.

Abstract:

• Since Wilkie's result [9] (which established that the elementary theory T_{exp} of (\mathbb{R}, exp) is model complete and o-minimal), many o-minimal expansions of the reals have been investigated. The problem of constructing nonarchimedean models of T_{exp} (and more generally, of an o-minimal expansion of the reals) gained much interest.

• In [2] it was shown that fields of generalized power series cannot admit an exponential function.

• Elaboration on an idea of [3], we construct in [4] fields of generalized power series with *support of bounded cardinality* which admit an exponential.

• In this talk, we present the construction given in [4]: We give a natural definition of an exponential, which makes these fields into models of the o-minimal expansion $T_{\text{an,exp}} :=$ the theory of the reals with restricted analytic functions and exponentiation.

• We present preliminary ideas on how to introduce derivation operators on these models. The aim is to present a new class of ordered differential fields, with many interesting properties.

References:

[1] Kuhlmann, F.- V. - Kuhlmann, S.: *Explicit construc*tion of exponential-logarithmic power series,

Prépublications de Paris 7 **No 61**, Séminaire Structures Algébriques Ordonnées, Séminaires **1995-1996**.

[2] Kuhlmann, F.-V. - Kuhlmann, S. - Shelah: *Exponentiation in power series fields*, Proc. Amer. Math. Soc. 125 (1997), 3177-3183.

[3] Kuhlmann, F.-V. - Kuhlmann, S.: *The exponential rank of nonarchimedean exponential fields*, in: Delzell & Madden (eds): Real Algebraic Geometry and Ordered Structures, Contemp. Math. **253**, AMS (2000), 181-201.

[4] Kuhlmann, S. - Shelah: κ -bounded Exponential Logarithmic Power Series Fields, Annals for Pure and Applied Logic, **136**, 284-296, (2005).

[5] Kuhlmann, S.- Tressl: A Note on Logarithmic - Exponential and Exponential - Logarithmic Power Series Fields, preprint (2006)

[6] Schmeling: Corps de Transséries, Dissertation (2001).

[7] van den Dries - Macintyre - Marker: Logarithmic-Exponential series, Annals for Pure and Applied Logic
111 (2001), 61–113

[8] van der Hoeven: *Transseries and real differential algebra*, Prépublications Université Paris-Sud (2004)

[9] Wilkie: Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function,

J. Amer. Math. Soc. 9 (1996), 1051–1094

Notations and Preliminaries.

The natural valuation.

• Let G be a totally ordered abelian group. The archimedean equivalence relation on G is defined as follows. For $0 \neq x$, $0 \neq y \in G$:

$$x \stackrel{+}{\sim} y$$
 if $\exists n \in \mathbb{N}$ s.t. $n|x| \ge |y|$ and $n|y| \ge |x|$

where $|x| := \max\{x, -x\}$. We set $x \ll y$ if for all $n \in \mathbb{N}$, $n|x| \ll |y|$. We denote by [x] is the archimedean equivalence class of x. We totally order the set of archimedean classes as follows: $[y] \ll [x]$ if $x \ll y$.

• Let $(K, +, \cdot, 0, 1, <)$ be an ordered field. Using the archimedean equivalence relation on the ordered abelian group (K, +, 0, <), we can endow K with the **natural valuation** v:

for $x, y \in K, x, y \neq 0$ define v(x) := [x] and [x]+[y] := [xy].

Notation:

Value group: $v(K) := \{v(x) \mid x \in K, x \neq 0\}$. Valuation ring:, $R_v := \{x \mid x \in K \text{ and } v(x) \geq 0\}$. Valuation ideal: $I_v := \{x \mid x \in K \text{ and } v(x) > 0\}$. Group of positive units:

 $U_v^{>0} := \{ x \mid x \in R_v, x > 0, v(x) = 0 \}.$

Ordered Exponential Fields.

An ordered field K is an **exponential field** if there exists a map

$$\exp: (K, +, 0, <) \longrightarrow (K^{>0}, \cdot, 1, <)$$

such that exp is an isomorphism of ordered groups. A map exp with these properties will be called an **exponential** on K. A **logarithm** on K is the compositional inverse log = exp⁻¹ of an exponential. WLOG, we require the exponentials (logarithms) to be *v*-compatible:

$$\exp(R_v) = U_v^{>0}$$
 or $\log(U_v^{>0}) = R_v > A_v$

We are interested in exponentials (logarithms) satisfying the **growth axiom** scheme: **(GA)**:

$$\forall n \in \mathbb{N} : x > \log(x^n) = n\log(x) \text{ for all } x \in K^{>0} \setminus R_v.$$

Via the natural valuation v, this is equivalent to

$$v(x) < v(\log(x))$$
 for all $x \in K^{>0} \setminus R_v$. (1)

A logarithm log is a (GA)-logarithm if it satisfies (1).

Hahn Groups and Fields.

• Let Γ be any totally ordered set and R any ordered abelian group. Then R^{Γ} is the set of all maps g from Γ to R such that the **support** $\{\gamma \in \Gamma \mid g(\gamma) \neq 0\}$ of g is well-ordered in Γ . Endowed with the lexicographic order and pointwise addition, R^{Γ} is an ordered abelian group, called the **Hahn group**.

• Representation for the elements of Hahn groups: Fix a strictly positive element $\mathbf{1} \in R$ (if R is a field, we take $\mathbf{1}$ to be the neutral element for multiplication). For every $\gamma \in \Gamma$, we will denote by $\mathbf{1}_{\gamma}$ the map which sends γ to $\mathbf{1}$ and every other element to 0 ($\mathbf{1}_{\gamma}$ is the characteristic function of the singleton { γ }.) For $g \in R^{\Gamma}$ write

$$g = \sum_{\gamma \in \Gamma} g_{\gamma} \mathbf{1}_{\gamma}$$

(where $g_{\gamma} := g(\gamma) \in R$).

• For $G \neq 0$ an ordered abelian group, k an archimedean ordered field, k((G)) is the (generalized) **power series field** with coefficients in k and exponents in G. As an ordered abelian group, this is just the Hahn group k^G . A series $s \in k((G))$ is written

$$s = \sum_{g \in G} s_g t^g$$

with $s_g \in k$ and well-ordered support $\{g \in G \mid s_g \neq 0\}$.

• The natural valuation on k((G)) is $v(s) = \min \text{ support } s$ for any series $s \in k((G))$. The value group is G and the residue field is k. The valuation ring $k((G^{\geq 0}))$ consists of the series with non-negative exponents, and the valuation ideal $k((G^{>0}))$ of the series with positive exponents. The **constant term** of a series s is the coefficient s_0 . The units of $k((G^{\geq 0}))$ are the series in $k((G^{\geq 0}))$ with a nonzero constant term.

• Additive Decomposition Given $s \in k((G))$, we can truncate it at its constant term and write it as the sum of two series, one with strictly negative exponents, and the other with non-negative exponents. Thus a complement in (k((G)), +) to the valuation ring is the Hahn group $k^{G^{<0}}$. We call it the **canonical complement to the** valuation ring and denote it by $k((G^{<0}))$.

• Multiplicative Decomposition Given $s \in k((G))^{>0}$, we can factor out the monomial of smallest exponent $g \in G$ and write $s = t^g u$ with u a unit with a positive constant term. Thus a complement in $(k((G))^{>0}, \cdot)$ to the subgroup $U_v^{>0}$ of positive units is the group consisting of the (monic) monomials t^g . We call it the **canonical complement** to the positive units and denote it by Mon k((G)).

$\kappa\text{-}\mathrm{bounded}$ Hahn Groups and Fields.

Fix a regular uncountable cardinal κ .

• The κ -bounded Hahn group $(R^{\Gamma})_{\kappa} \subseteq R^{\Gamma}$ consists of all maps of which support has cardinality $< \kappa$.

• The κ -bounded power series field $k((G))_{\kappa} \subseteq k((G))$ consists of all series of which support has cardinality $< \kappa$. It is a valued subfield of k((G)). We denote by $k((G^{\geq 0}))_{\kappa}$ its valuation ring. Note that $k((G))_{\kappa}$ contains the monic monomials. We denote by $k((G^{<0}))_{\kappa}$ the complement to $k((G^{\geq 0}))_{\kappa}$.

• Our first goal is to define an exponential (logarithm) on $k((G))_{\kappa}$ (for appropriate choice of G). From the above discussion, we get:

Proposition 0.1 Set $K = k((G))_{\kappa}$. Then (K, +, 0, <) decomposes lexicographically as the sum:

$$(K, +, 0, <) = k((G^{<0}))_{\kappa} \oplus k((G^{\geq 0}))_{\kappa} .$$
 (2)

 $(K^{>0},\cdot,1,<)$ decomposes lexicographically as the product:

$$(K^{>0}, \cdot, 1, <) = Mon(K) \times U_v^{>0}$$
 (3)

Moreover, Mon (K) is order isomorphic to G through the isomorphism $t^g \mapsto -g$.

Proposition 0.1 allows us to achieve our goal in two main steps; by defining the logarithm on Mon (K) and on $U_v^{>0}$.

The Main Theorem

Theorem 0.2 Let Γ be a chain, $G = (\mathbb{R}^{\Gamma})_{\kappa}$ and $K = R((G))_{\kappa}$. Assume that

$$l:\Gamma\to G^{<0}$$

is an embedding of chains. Then l induces an embedding of ordered groups (a prelogarithm)

$$log : (K^{>0}, \cdot, 1, <) \longrightarrow (K, +, 0, <)$$

as follows: given $a \in K^{>0}$, write $a = t^g r(1 + \varepsilon)$ (with $g = \sum_{\gamma \in \Gamma} g_{\gamma} \mathbf{1}_{\gamma}, r \in \mathbb{R}^{>0}, \varepsilon$ infinitesimal), and set

$$\log(a) := -\sum_{\gamma \in \Gamma} g_{\gamma} t^{l(\gamma)} + \log r + \sum_{i=1}^{\infty} (-1)^{(i-1)} \frac{\varepsilon^i}{i} \qquad (4)$$

This prelogarithm satisfies

$$v(\log t^g) = l(\min \operatorname{support} g) \tag{5}$$

Moreover, \log is surjective (a logarithm) if and only if l is surjective, and \log satisfies **GA** if and only if

$$l(\min \operatorname{support} g) > g$$
 for all $g \in G^{<0}$. (6)

Prelogarithmic fields of power series.

Example 0.3 Power Series fields endowed with a basic prelogaritm: Let Γ be any chain, $G = (\mathbb{R}^{\Gamma})_{\kappa}$ and $K = \mathbb{R}((G))_{\kappa}$. Then

 $\iota: \Gamma \to G^{<0}$ defined by $\gamma \mapsto -\mathbf{1}_{\gamma}$

is an embedding of chains, and gives rise to prelogaritm on K. However, this prelogarithm is neither surjective nor does it satisfy **GA**.

• To get a prelogarithm satisfying **GA**, we choose $\sigma \in$ Aut (Γ) with the property that

$$\sigma(\gamma) > \gamma \text{ for all } \gamma \in \Gamma \tag{7}$$

(We say that σ is an **increasing** automorphism). We set $l = \iota \circ \sigma$. Now

 $l: \Gamma \to G^{<0}$ defined by $\gamma \mapsto -\mathbf{1}_{\sigma}(\gamma)$

is an embedding of chains satisfying (6), so gives rise to a prelogaritm on K satisfying **GA**.

We call (K, \log) the **prelogarithmic field of** κ **-bounded power series over** (Γ, σ) .

• To get a surjective prelogarithm, we have to modify Γ as in the next section.

The κ -th iterated lexicographic power of a chain.

Proposition 0.4 Let $\Gamma \neq \emptyset$ be a given chain. There is a canonically constructed chain $\Gamma_{\kappa} \supseteq \Gamma$ together with an **isomorphism** of ordered chains

$$\iota_{\kappa}: \Gamma_{\kappa} \to G_{\kappa}^{<0}$$

where $G_{\kappa} := (\mathbb{R}^{\Gamma_{\kappa}})_{\kappa}$. Moreover, every increasing $\sigma \in$ Aut (Γ) extends canonically to an increasing $\sigma_{\kappa} \in$ Aut (Γ_{κ})

We call the pair $(\Gamma_{\kappa}, \iota_{\kappa})$ the κ -th **iterated lexicographic power** of Γ .

We are now ready to summarize the procedure of constructing the **Exponential-Logarithmic field of** κ **bounded series over** (Γ, σ). Let Γ be given and σ an increasing automorphism.

- Construct Γ_{κ} , G_{κ} , ι_{κ} , and σ_{κ} .
- Set $K := \mathbb{R}((G_{\kappa}))_{\kappa}$ and $l := \iota_{\kappa} \circ \sigma_{\kappa}$. Note that l is surjective and satisfies (6).
- Denote by log the surjective **GA** logarithm induced on $K^{>0}$ by l and set $\exp = \log^{-1}$.
- (K, \exp) is a model of $T_{\text{an,exp}}$.

Growth Rates.

• Let Γ be a chain and $\sigma \in \operatorname{Aut}(\Gamma)$ an increasing automorphism. By induction, we define the **n-th iterate** of $\sigma: \sigma^1(\gamma) := \sigma(\gamma)$ and $\sigma^{n+1}(\gamma) := \sigma(\sigma^n(\gamma))$. Define an equivalence relation on Γ as follows: For $\gamma, \gamma' \in \Gamma$, set

$$\gamma \sim_{\sigma} \gamma'$$
 iff $\exists n \in \mathbb{N}$ s.t. $\sigma^n(\gamma) \ge \gamma'$ and $\sigma^n(\gamma') \ge \gamma$.

The equivalence classes $[\gamma]_{\sigma}$ of \sim_{σ} are convex and closed under application of σ (they are the convex hulls of the orbits of σ). The order of Γ induces an order on Γ/\sim_{σ} . The order type of Γ/\sim_{σ} is the **rank** of (Γ, σ) .

Example 0.5 Let $\Gamma = \mathbb{Z} \overrightarrow{\Pi} \mathbb{Z}$ (i.e. the lexicographically ordered Cartesian product $\mathbb{Z} \times \mathbb{Z}$) endowed with the automorphism $\sigma((x, y)) := (x, y + 1)$. The rank of σ is \mathbb{Z} . Now consider the increasing automorphism $\tau((x, y)) := (x + 1, y)$. The rank of τ is 1.

• Let K be a real closed field and log a (**GA**)- logarithm on $K^{>0}$. Define an equivalence relation on $K^{>0} \setminus R_v$:

 $a \sim_{log} a'$ iff $\exists n \in \mathbb{N}$ s.t. $\log_n(a) \leq (a')$ and $\log_n(a') \leq a$

(where \log_n is the n-th iterate of the log). The order type of the chain of equivalence classes is the **logarithmic rank** of $(K^{>0}, \log)$.

We can compute the logarithmic rank of the Exponential-Logarithmic field of κ -bounded series over (Γ, σ) :

Theorem 0.6 The logarithmic rank of $(\mathbb{R}((G_{\kappa}))_{\kappa}^{>0}, \log)$ is equal to the rank of (Γ, σ) .

This proof (as many other proofs) is based on the observation that every series is log-equivalent to a **fundamental monomial**, that is a monomial of the form

$$t^{-\mathbf{1}_{\gamma}}$$
 with $\gamma \in \Gamma$.

Next one observes that

for all $\gamma, \gamma' \in \Gamma : t^{-\mathbf{1}_{\gamma}} \sim_{log} t^{-\mathbf{1}_{\gamma'}}$ if and only if $\gamma \sim_{\sigma} \gamma'$.

This in turn is based on the following useful formula for $\log_n(t^{-1\gamma})$: by induction,

$$\log_n(t^{-\mathbf{1}_\gamma}) = t^{-\mathbf{1}_\sigma n_{(\gamma)}} \,.$$

Remark 0.7 If Γ admits automorphisms of distinct rank, then $(\mathbb{R}((G_{\kappa})))$ admits logarithms of distinct logarithmic rank. We can also use this observation to introduce **transexponentials**, as illustrated in the next example. **Example 0.8** Let $\Gamma = \mathbb{Z} \overrightarrow{\Pi} \mathbb{Z}$, $\sigma((x, y)) := (x, y + 1)$, (K, \log) the corresponding κ -bounded model. For the automorphism $\tau((x, y)) := (x + 1, y)$, let L, respectively $T := L^{-1}$ be the corresponding induced logarithm and exponential on K.

Effect of σ , τ on the fundamental monomials: let $\gamma = (x, y) \in \Gamma$, then

$$\log(t^{-\mathbf{1}_{\gamma}}) = t^{-\mathbf{1}_{\sigma(\gamma)}} ,$$

Whereas

$$L(t^{-\mathbf{1}_{\gamma}}) = t^{-\mathbf{1}_{\tau(\gamma)}}$$

We see that, for any fundamental monomial $X := t^{-1_{\gamma}}$ and any $n \in \mathbb{N}$ we have:

$$L(X) < \log_n(X) .$$

Also, a simple computation (using the fact that σ and τ commute) shows that also, for all $n \in \mathbb{N}$:

$$T(X) > \exp_n(X) \, .$$

In the next section, we see how the logarithm determines the derivation. We expect to obtain fields equipped with several distinct derivations.

Introducing Operators.

Main Motivation: We want a "Kaplansky embedding Theorem" for ordered differential fields. The κ -bounded fields of power series are good candidates as "universal domains". But for this to make sense, we need first to endow them with a good differential structure.

Main project: Given (Γ, σ) , introduce, if possible, derivation and composition operators on Exponential-Logarithmic field of κ -bounded series over (Γ, σ) .

It seems to be enough to focus on the following

Main subproject: Given (Γ, σ) , introduce, if possible, derivation and composition operators on the prelogarithmic field of κ -bounded series over (Γ, σ) .

Indeed, in [6] a method is developed showing the following: given derivation and composition operators (satisfying some good properties) on a "field of transseries" \mathbf{T} , one can extend these operators to the "exponential closure" \mathbf{T}^{exp} . It seems that this method may be adapted to our context: given derivation and composition operators (satisfying some good properties) on the prelogarithmic field of κ -bounded series over (Γ, σ) , one can extend these operators to the Exponential-Logarithmic field of κ -bounded series over (Γ, σ) .

Final Goal Find necessary and sufficient conditions on (Γ, σ) so that the corresponding prelogarithmic field of κ -bounded series (and the corresponding Exponential-Logarithmic field of κ -bounded series) admit a *surjective* derivation.

Derivations: We want to endow the prelogarithmic field of κ -bounded series over (Γ, σ) with a derivation D satisfying the following properties:

• D is strongly linear, that is

$$D\sum_{g} r_{g} t^{g} = \sum_{g} r_{g} D t^{g} .$$
(8)

• D satisfies Leibniz rule:

$$D(ab) = aD(b) + D(a)b \tag{9}$$

• D satisfies the rule for the logarithmic derivative for a > 0:

$$D\log a = Da/a \tag{10}$$

Reductions: The above rules direct us to perform a number of steps in trying to define derivatives:

(i) From (8) and (9), it is clear that we only need to determine Dt^g , for $g \in G^{<0}$.

(ii) From (10) determining Dt^g reduces to determining $D\log t^g$.

(iii) By definition of log, this in turn reduces to determining $D \log t^{-1\gamma}$, for a fundamental monomial $t^{-1\gamma}$ with $\gamma \in \Gamma$.

(iv) Applying (10) again we see that for any $\gamma \in \Gamma_0$ we have:

$$Dt^{-\mathbf{1}_{\sigma(\gamma)}} = t^{\mathbf{1}_{\gamma}}Dt^{-\mathbf{1}_{\gamma}}$$

(v) Finally from (iv), we see that we only need to define $Dt^{-1\gamma_0}$ for a fixed representative $\gamma_0 \in \Gamma$ of an orbit of σ in Γ .

Example 0.9 Let $\Gamma = \mathbb{Z}$ endowed with the automorphism $\sigma(z) := z + 1$. For simplicity, let us choose $\gamma_0 = 0$ and set

$$T := t^{-1_0} \text{ and } DT = 1$$

Then $t^{-\mathbf{1}_n} = \log_n T$ if n > 0, and $t^{-\mathbf{1}_n} = \exp_{-n} T$ if n < 0. Therefore, for n > 0

$$Dt^{-\mathbf{1}_n} = \prod_{k=0}^{n-1} t^{\mathbf{1}_k}$$
 and $Dt^{-\mathbf{1}_{-n}} = \prod_{k=1}^n t^{-\mathbf{1}_{-k}}$

It is non-trivial to verify that these definitions induce a *well-defined* derivative!

Example 0.10 Let $\Gamma = \mathbb{Z} \overrightarrow{\Pi} \mathbb{Z}$ endowed with the automorphism $\sigma((x, y)) := (x, y + 1)$. The rank of σ is \mathbb{Z} . For each orbit of σ_0 we fix a representative $z \in \mathbb{Z}$. We set $T_z := t^{-1_z}$. Then $\{T_z ; z \in \mathbb{Z}\}$ will represent infinitely many algebraically independent variables, which will determine an infinite family $\{\delta_z\}$ of commuting partial derivatives.

What about a derivation induced by the automorphism $\tau((x, y)) := (x + 1, y)$ of rank one? This is more challenging. We have countably many distinct orbits but with a single common convex hull. This suggests defining " arbitrary iterates" $\log_{\gamma} T$ of the log, to capture the derivative of every fundamental monomial.
