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• (1902-1912): F. Hausdorff on foundations of set the-

ory, and independently H. Hahn, develop universal con-

structions of totally ordered abelian groups and fields.

• (1910): G. H. Hardy monograph on asymptotic scales

for differentiable real valued functions.

• (1927) E. Artin and O. Schreier develop the algebraic

theory of real closed fields.

• (1930) A. Tarski establishes quantifier elimination for

and decidabilty of T:= Th(R,+, ·, <).

• (1932) W. Krull lays foundations for valuation theory.

•(1954) A. Seidenberg gives a geometric interpretation

for semi-algebraic sets of Tarski’s elimination result.
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Today the celebrated Tarski - transfer principle is the

foundation of modern semi-algebraic geometry, the Artin-

Schreier theory that of real algebra, the work of Hausdorff-

Hahn-Hardy that of ordered algebraic structures and asymp-

totic analysis. Combined with the work of Krull, this

provides universal power series constructions of non-

Archimedean real closed fields, i.e. of non-Archimedean

models of T.

In his monograph Tarski asks for analogues results for

Texp=: Th(R,+, ·, <, exp), the elementary theory of the

real exponential field.
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This led L. van den Dries in the 1980-1990s to develop

o-minimal geometry, A. Wilkie in the 1990s to prove

the model completeness and o-minimality of Texp, and to-

gether with A. Macintyre its decidabilty modulo the real

Schanuel conjecture.

Our contributions since the 1990s provided universal power

series constructions of non-Archimedean exponential real

closed fields, i.e. of non-Archimedean models of Texp. In-

spired by the work of Hardy, we also studied differential

operators on these models. The role of the log-atomic

monomials in these constructions was recently revealed

to us in connection to J. Conway’s field of surreal num-

bers. This the main story I want to tell today.
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PART I: Power Series Constructions of Real Closed

Fields.

Construction of a Hahn Group:

• Let Γ any totally ordered set and RΓ the set of all maps

g from Γ to R such that the support {γ ∈ Γ | g(γ) 6= 0}
of g is well-ordered in Γ.

• Endowed with pointwise addition and the lexicographic

order, RΓ is a divisible ordered abelian group (DOAG),

called the Hahn group of rank Γ.

• RΓ is archimedean iff Γ is a singleton.

• Hahn’s Embedding Theorem: a DOAG group of

rank Γ is (isomorphic to) a subgroup of RΓ.
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Representation for the elements of Hahn groups:

• For every γ ∈ Γ, we denote by 1γ the map which sends

γ to 1 and every other element to 0

• 1γ is the characteristic function of the singleton {γ}.
• For g ∈ RΓ write

g =
∑
γ∈Γ

gγ1γ

with gγ := g(γ) ∈ R and well-ordered support in Γ.
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Construction of a Hahn field:

• For G 6= 0 an ordered abelian group, R((G)) is the field

of generalized power series with coefficients in R and

exponents in G:

• A series s ∈ R((G)) is written

s =
∑
g∈G

sgt
g

with sg ∈ R and well-ordered support {g ∈ G | sg 6= 0}.
• As an ordered abelian group, this is just the Hahn group

RG, endowed with convolution (Cauchy) product.
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• (Tarski’ s recursive axiomatisation:) A totally ordered

field K is said to be real closed if every positive element

has a square root in K, and every polynomial in K[x] of

odd degree has a root in K.

• (W. Krull / S. MacLane/ ...) R((G)) is real closed iff G

is divisible.

• Let (K,+, ·, 0, 1, <) be an ordered field, the natural

valuation v on K is the valuation whose valuation ring

the convex hull of Z in K.
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Notation:

Value group: G = v(K) := {v(x) | x ∈ K, x 6= 0}.
Valuation ring:, Rv := {x | x ∈ K and v(x) ≥ 0}.
Valuation ideal: Iv := {x | x ∈ K and v(x) > 0}.
Group of positive units:

U>0
v := {x | x ∈ Rv, x > 0, v(x) = 0}.

Residue field: k = K := Rv/Iv.

Kaplansky Embedding’s Theorem (1942): Let K

be real closed field with residue field k and value group G.

Then K is (isomorphic to) a subfield of a field of k((G)).
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Direct sum (respectively product) lexicographic

decompositions: Let K be real closed field with value

group G, then:

(K,+, <) = A⊕Rv

(K>0, ·, <) = B×U>0
v

The divisible ordered abelian groups A (additive) and B
(multiplicative) are unique up to isomorphism. More pre-

cisely B ' G. The rank of A is (isomorphic to) G<0 as

linearly ordered sets.
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Example: Let G be a DOAG and set K := R((G)).

• The natural valuation on R((G)) is v(s) = min support s

for s ∈ R((G)), the value group is G.

• The valuation ring R((G≥0)) consists of the series with

non-negative exponents, the valuation ideal R((G>0)) of

the series with positive exponents. The residue field is R
• The constant term of a series s is the coefficient s0.

The units of R((G≥0)) are the series in R((G≥0)) with a

non-zero constant term.
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• Additive Decomposition:

Given s ∈ R((G)), we truncate it at its constant term

and re-write it as the sum of two series, one with strictly

negative exponents, and the other with non-negative ex-

ponents. Thus an additive lexicographic complement A in

(K,+, <) to the valuation ring is the Hahn group RG<0.

We call it the canonical complement to the valua-

tion ring and denote it by R((G<0)).
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•Multiplicative Decomposition:

Given s ∈ R((G))>0, we factor out the monomial of small-

est exponent g ∈ G and re-write s = tgu as a product,

where u a unit with a positive constant term. Thus a mul-

tiplicative lexicographic complement B in (K>0, ·, <) to

the subgroup U>0
v of positive units is the group consisting

of the (monic) monomials tg. We call it the canonical

complement to the positive units and denote it by

Mon K. Note that, MonK is order isomorphic to G

through the isomorphism tg 7→ −g.
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PART II: Power Series Constructions of Real

Closed Exponential Fields.

A real closed field K is an exponential field if there

exists a map

exp : (K,+, 0, <) −→ (K>0, ·, 1, <)

which is an isomorphism of ordered groups. A map exp

with these properties will be called an exponential on

K. A logarithm on K is the compositional inverse log =

exp−1 of an exponential. We always require w.l.o.g. that

the exponential be v-compatible:

exp(Rv) = U>0
v .
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We are only interested in exponentials (logarithms) satis-

fying the growth axiom scheme: (GA):

∀n ∈ N : x > log(xn) = nlog(x) for all x ∈ K>0 \Rv .

Via the natural valuation v, this is equivalent to

v(x) < v(log(x)) for all x ∈ K>0 \Rv . (1)

A logarithm log is a (GA)-logarithm if it satisfies (1).
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Left Exponentiation is imposed on us:

Let (K,+, ·, exp) be a real closed field endowed with a v-

compatible exponential exp. We see that exp must restrict

to a left exponential, i.e. an isomorphism exp : A→ B.
This observation has two mighty consequences:

Theorem 1 [KKS]: Let G 6= 0 be a DOAG and set

R((G)). Then R((G<0)) is never isomorphic to G, so

R((G)) cannot admit a v-compatible exponential.

Theorem 2 [S.K.]: Let (K,+, ·, exp) be a real closed

field endowed with a v-compatible exponential exp. Let

G be its value group and Γ its rank. Then Γ must be

isomorphic as linearly ordered set to G<0.
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Theorem 2 follows immediately from the decomposition

theorems.

Call a DOAG G an exponential group if its rank Γ is

isomorphic as linearly ordered set to G<0.

Theorems 1 and 2 are two major obstacles to construc-

tion of exponential fields via power series: 1. We can-

not use the full field R((G)), we must try to use an

appropriate subfield instead 2. We cannot use our fa-

vorite DOAG as value group, instead we have to first

learn to construct exponential groups.
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Characterization of countable exponential groups

[S.K]:

A countable DOAG G 6= 0 is an exponential group if and

only if G is isomorphic to the Hahn sum ⊕QC for some

countable archimedean group C 6= 0.

For the uncountable case we must work much harder.
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κ–bounded Hahn Groups and Fields. Fix a regular

uncountable cardinal κ.

• The κ-bounded Hahn group (RΓ)κ ⊆ RΓ consists

of all maps of which support has cardinality < κ.

•The κ-bounded power series fieldR((G))κ ⊆ R((G))

consists of all series of which support has cardinality < κ.

It is a valued subfield of R((G)). We denote by R((G≥0))κ
its valuation ring. Note that R((G))κ contains the monic

monomials.

We denote by R((G<0))κ the complement to R((G≥0))κ.
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Proposition 0.1 Set K = R((G))κ. Then (K,+, 0, <)

decomposes lexicographically as the sum:

(K,+, 0, <) = R((G<0))κ ⊕ R((G≥0))κ . (2)

(K>0, ·, 1, <) decomposes lexicographically as the prod-

uct:

(K>0, ·, 1, <) = Mon (K)× U>0
v (3)

• Our goal is to define an exponential (logarithm) on

R((G))κ (for appropriate choice of G).

Proposition 0.1 allows us to achieve our goal in two main

steps; by defining the logarithm on Mon (K) and on U>0
v .
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Theorem 0.2 Let Γ be a chain, set G := (RΓ)κ and

K := R((G))κ. Assume that

l : Γ→ G<0

is an isomorphism of chains. Then l uniquely defines

a logarithm

log : (K>0, ·, 1, <) −→ (K,+, 0, <)

as follows: given a ∈ K>0, write a = tgr(1 + ε), g =∑
γ∈Γ gγ1γ, r ∈ R>0, ε infinitesimal, and set

log(a) := −
∑
γ∈Γ

gγt
l(γ) + log r +

∞∑
i=1

(−1)(i−1)ε
i

i
(4)
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This logarithm satisfies

v(log tg) = l(min support g) (5)

Moreover, log satisfies GA and is a model of Texp if

and only if

l(min support g) > g for all g ∈ G<0 . (6)

Thus the theorem states that the general necessary con-

dition that the value group be an exponential group is

also sufficient in this particular context. Therefore our

next homework is to construct κ-bounded exponential

groups.
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The κ-th closure (Γκ, ικ, Gκ) of a triplet (Γ0, ι0, G0):

• Input: Γ0 any non-empty chain, G0 = (RΓ0)κ, and ι0
a group section, that is

ι0 : Γ0 → G<0
0

is an embedding of linearly ordered sets satisfying

min support (ι0(γ)) = γ for all γ ∈ Γ0 .

• Output: A chain Γκ, the corresponding κ-bounded

group Gκ := (RΓκ)κ, an isomorphism of linearly ordered

sets

ικ : Γκ → G<0
κ

making Gκ the requested κ-bounded exponential group.
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• We shall construct by transfinite induction on µ ≤ κ a

chain Γµ together with an embedding of ordered chains

ιµ : Γµ → G<0
µ

where Gµ := (RΓµ)κ. We shall have Γν ⊂ Γµ and ιν ⊂ ιµ
if ν < µ.

• Assume that for all α < µ we have already constructed

Γα, Gα := (RΓα)κ, and the embedding

ια : Γα → G<0
α .
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First assume that µ = α + 1 is a successor ordinal. Since

Γα is isomorphic to a subchain of G<0
α through ια, we can

take Γα+1 to be a chain containing Γα as a subchain and

admitting an isomorphism ια+1 onto G<0
α which extends

ια .
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More precisely,

Γα+1 := Γα ∪ (G<0
α \ ια(Γα)) ,

endowed with the patch ordering: if γ1, γ2 ∈ Γα+1 both

belong to Γα, compare them there, similarly if they both

belong to G<0
α . If γ1 ∈ Γα but γ2 ∈ G<0

α we set γ1 < γ2

if and only if ια(γ1) < γ2 in Gα. Then ια+1 is defined in

the obvious way: ια+1|Γα := ια and ια+1|(G<0α \ια(Γα)) := the

identity map. Note that

ια+1(Γα+1) = G<0
α . (7)

Thus ια+1 is an embedding of Γα+1 into G<0
α+1.
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If µ is a limit ordinal we set

Γµ :=
⋃
α<µ

Γα , ιµ :=
⋃
α<µ

ια and Gµ := (RΓµ)κ .

Note that by construction and (7)

ιµ(Γµ) =
⋃
α<µ

G<0
α (8)

and
⋃
α<µGα ⊂ Gµ.

This completes the construction of Γκ :=
⋃
α<κ Γα , ικ :=⋃

α<κ ια and Gκ := (RΓκ)κ.
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We now claim that

Gκ =
⋃
α<κ

Gα

Once the claim is established, we conclude from (8) that

ικ : Γκ → G<0
κ is an isomorphism, as required. Let g ∈

Gκ and κ > δ := card(support g). Now support g :=

{γµ ; µ < δ} ⊂ Γκ, so for every µ < δ choose αµ < κ

such that γµ ∈ Γαµ. Clearly card({αµ ; µ < δ}) ≤ δ < κ

so {αµ ; µ < δ} cannot be cofinal in κ since κ is regular,

therefore it is bounded above by some α ∈ κ. It follows

that support g ⊂ Γα, so g ∈ Gα as required.
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Finally we take care of (GA) by exploiting right shifts

of Γ0 to improve the group exponential ικ:

Proposition 0.3 Assume that σκ ∈ Aut (Γκ) is such

that σκ|Γµ ∈ Aut (Γµ) for all µ ∈ κ and σκ(γ) > γ for

all γ ∈ Γ0. Then the isomorphism

l := ικ ◦ σκ : Γκ → G<0
κ

satisfies (6).
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We are now ready to summarize the procedure of con-

structing the Exponential-Logarithmic field of κ-

bounded series over (Γ0, ι0, G0, σ0) where σ0 a right

shift automorphism of Γ0.

• Construct Γκ, Gκ, ικ, and σκ.

• Set K := R((Gκ))κ and l := ικ ◦ σκ. Note that l is

surjective and satisfies (6).

• Denote by log the surjective GA logarithm induced on

K>0 by l and set exp = log−1.

• (K, exp) is a model of Tan,exp.
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Group sections and log-atomic monomials.

Set K:= EL(κ,Γ0, ι0, G0, σ0).

• A monomial tg is log-atomic if logn(tg) is a monomial

for all n ∈ N.

• Log-atomic elements are fundamental when defining transse-

rial derivations on K.

• Group sections always exist and can vary widely.

• It turns out that the set of log-atomic monomials de-

pends on the choice of the group section.
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For the computations below recall that

log(tg) =
∑
γ∈Γ

−gγtl(γ)

for g =
∑

γ∈Γ gγ1γ.

• Below denote by σn(γ) the n-th iterate of σ := σ0.

The basic section: is defined by γ 7→ −1γ. The cor-

responding l : Γ → G<0
0 is defined by γ 7→ −1σ(γ). By

induction

log n(t−1γ) = t−1σn(γ) .

So t−1γ is log-atomic for all γ ∈ Γ0.
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The 2-element support section:

• Since Γ0 has no last element, for every γ ∈ Γ0 let τ (γ) >

γ. Consider the section γ 7→ −1γ + 1τ(γ).

• We claim that the corresponding log has no log-atomic

elements.

• We prove this for tg with g ∈ Gκ =
⋃
α<κGα , by

transfinite induction on α.

• We will need the following simple observation:

A necessary condition for log-atomic: Assume

that tg is log-atomic and set logn(tg) := tgn. Then gn
must have singleton support for all n ∈ N0.
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• α = 0: Let g ∈ G0 have singleton support, say g = −1γ.

Compute log(tg) = tl(γ). But l(γ) = −1σ(γ) + 1τ(σ(γ)). So

tg is not log-atomic.

• α is a limit ordinal: clear by induction hypothesis.

• Consider now g ∈ Gα+1. As before g has singleton

support γ ∈ Γα+1, say g = −1γ, compute log(tg) = tl(γ).

But l(γ) ∈ G<0
α by (7), so log(tg) = tl(γ) is not log-atomic,

a fortiori tg is not log-atomic.
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