
AMS.MAA Joint Mathematics
Meetings,

Seattle JAN 6-9, 2016

January 8, 2016

Salma Kuhlmann 1

Schwerpunkt Reelle Algebra und Geometrie,

Fachbereich Mathematik und Statistik,

Universität Konstanz,

78457 Konstanz, Germany

Email: salma.kuhlmann@uni-konstanz.de

The slides of this talk will be available at:

http://www.math.uni-konstanz.de/ kuhlmann/vortraege.htm

1Supported by Ausschuß für Forschungsfragen der Universität Konstanz

1



Exponential - logarithmic power
series fields and the surreal numbers.

The aim of this talk is to survey some of our work on

exponential-logarithmic power series fields relevant to the

surreals, which lead us to

our discovery of the class of kappa-surreal numbers and

our formulation of three conjectures:
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Conjecture 1: the kappa-surreal numbers generate the

chain of log-atomic surreal numbers,

Conjecture 2: the field of surreal numbers No is an

exponential- logarithmic power series field over this chain

of initial fundamental monomials,

Conjecture 3: No can therefore be equipped with a sur-

jective derivation which makes it into a universal domain

for ordered differential fields of Hardy type .
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Part I: The κ-bounded EL- series field EL(Γ, σ):

Constructing models of real exponentiation starting with a

chain of initial fundamental monomials Γ equipped with a

right shift automorphism σ, highlighting exponential rank.

• Kuhlmann, F.- V. - Kuhlmann, S.: Explicit construc-

tion of exponential-logarithmic power series, Prépublications

de Paris 7 61, (1995-1996).

• Kuhlmann : Ordered Exponential Fields, Fields Insti-

tute Monograph Series vol. 12, AMS (2000)

• Kuhlmann- Shelah: κ–bounded Exponential Logarith-

mic Power Series Fields, Annals for Pure and Applied

Logic, 136, 284-296, (2005).

•Kuhlmann- Tressl: Comparison of Exponential-Logarithmic

and Logarithmic-Exponential series Math. Logic Quar-

terly, 58, 434-448 (2012)
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Part II: Hardy Type Derivations on EL- series

and applications to Schanuel’s conjecture:

Developing a general method to construct derivations on

EL(Γ, σ) starting with an arbitrary definition of a deriva-

tion of the initial fundamental monomials. Combinatorial,

set theoretic criteria on supports.

•Kuhlmann- Matusinski: Hardy type derivations in gen-

eralized series fields, J. of Algebra, 351, 185-203, (2012)

• Kuhlmann- Matusinski: Hardy type derivations on

fields of exponential logarithmic series, J. of Algebra,

345, 171-189 (2011)

• Kuhlmann- Matusinski- Shkop: A Note on Schanuel’s

Conjectures for Exponential Logarithmic Power Series

Fields, Archiv der Mathematik, 100, 431-436 (2013)
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Part III: The exponential rank of Gonshors ex-

ponentiation on the surreals.

Investigating the log-exp equivalence classes and fixing a

canonical system of representatives, the class of kappa

numbers, which contains strictly the class of generalised

epsilon numbers and is strictly contained in the class of

log-atomic surreals.

• Kuhlmann- Matusinski: The exponential-logarithmic

equivalence classes of surreal numbers, ORDER - A

Journal on the Theory of Ordered Sets and its Applica-

tions, 32, 53-68 (2014)

Part IV: Integer parts of fields of power series,

models of arithmetic and the ring of omnific

surreals:

• Biljakovic- Kotchetov-Kuhlmann: Primes and Irreducibles

in Truncation Integer Parts of Real Closed Fields, LNL

26, Association for Symbolic Logic, 42-65 (2006)

• Fornasiero- Kuhlmann, F.-V.- Kuhlmann, S.: Towers

of complements and truncation closed embeddings of

valued fields J. of Algebra, 323, 574-600 (2010)
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PART I

The natural valuation.

• LetG be a totally ordered abelian group. The archimedean

equivalence relation on G is defined as follows. For 0 6= x,

0 6= y ∈ G:

x
+∼ y if ∃n ∈ N s.t. n|x| ≥ |y| and n|y| ≥ |x|

where |x| := max{x,−x}. We set x << y if for all n ∈ N,

n|x| < |y|. We denote by [x] is the archimedean equiva-

lence class of x. We totally order the set of archimedean

classes as follows: [y] < [x] if x << y.

• Let (K,+, ·, 0, 1, <) be an ordered field. Using the

archimedean equivalence relation on the ordered abelian

group (K,+, 0, <), we can endow K with the natural

valuation v:

for x, y ∈ K, x, y 6= 0 define v(x) := [x] and [x]+[y] := [xy].

Notation:

Value group: v(K) := {v(x) | x ∈ K, x 6= 0}.
Valuation ring:, Rv := {x | x ∈ K and v(x) ≥ 0}.
Valuation ideal: Iv := {x | x ∈ K and v(x) > 0}.
Group of positive units:

U>0
v := {x | x ∈ Rv, x > 0, v(x) = 0}.
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Ordered Exponential Fields.

An ordered fieldK is an exponential field if there exists

a map

exp : (K,+, 0, <) −→ (K>0, ·, 1, <)

such that exp is an isomorphism of ordered groups. A map

exp with these properties will be called an exponential

on K. A logarithm on K is the compositional inverse

log = exp−1 of an exponential. We require the exponen-

tials (logarithms) to be v-compatible:

exp(Rv) = U>0
v .

We are interested in exponentials (logarithms) satisfying

the growth axiom scheme: (GA):

∀n ∈ N : x > log(xn) = nlog(x) for all x ∈ K>0 \Rv .

Via the natural valuation v, this is equivalent to

v(x) < v(log(x)) for all x ∈ K>0 \Rv . (1)

A logarithm log is a (GA)-logarithm if it satisfies (1).
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Hahn Groups and Fields.

• Let Γ be any totally ordered set and R any ordered

abelian group. Then RΓ is the set of all maps g from Γ

to R such that the support {γ ∈ Γ | g(γ) 6= 0} of g is

well-ordered in Γ. Endowed with the lexicographic order

and pointwise addition, RΓ is an ordered abelian group,

called the Hahn group.

•Representation for the elements of Hahn groups:

Fix a strictly positive element 1 ∈ R (if R is a field, we

take 1 to be the neutral element for multiplication). For

every γ ∈ Γ, we will denote by 1γ the map which sends γ

to 1 and every other element to 0 (1γ is the characteristic

function of the singleton {γ}.) For g ∈ RΓ write

g =
∑
γ∈Γ

gγ1γ

(where gγ := g(γ) ∈ R).

• For G 6= 0 an ordered abelian group, k an archimedean

ordered field, k((G)) is the (generalized) power series

field with coefficients in k and exponents in G. As an

ordered abelian group, this is just the Hahn group kG. A

series s ∈ k((G)) is written

s =
∑
g∈G

sgt
g

with sg ∈ k and well-ordered support {g ∈ G | sg 6= 0}.
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• The natural valuation on k((G)) is v(s) = min support s

for any series s ∈ k((G)). The value group is G and the

residue field is k. The valuation ring k((G≥0)) consists of

the series with non-negative exponents, and the valuation

ideal k((G>0)) of the series with positive exponents. The

constant term of a series s is the coefficient s0. The

units of k((G≥0)) are the series in k((G≥0)) with a non-

zero constant term.

•Additive Decomposition Given s ∈ k((G)), we can

truncate it at its constant term and write it as the sum of

two series, one with strictly negative exponents, and the

other with non-negative exponents. Thus a complement

in (k((G)),+) to the valuation ring is the Hahn group

kG
<0

. We call it the canonical complement to the

valuation ring and denote it by k((G<0)).

•Multiplicative Decomposition Given s ∈ k((G))>0,

we can factor out the monomial of smallest exponent g ∈
G and write s = tgu with u a unit with a positive constant

term. Thus a complement in (k((G))>0, ·) to the subgroup

U>0
v of positive units is the group consisting of the (monic)

monomials tg. We call it the canonical complement

to the positive units and denote it by Mon k((G)).
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κ–bounded Hahn Groups and Fields.

Fix a regular uncountable cardinal κ.

• The κ-bounded Hahn group (RΓ)κ ⊆ RΓ consists

of all maps of which support has cardinality < κ.

•The κ-bounded power series field k((G))κ ⊆ k((G))

consists of all series of which support has cardinality < κ.

It is a valued subfield of k((G)). We denote by k((G≥0))κ
its valuation ring. Note that k((G))κ contains the monic

monomials. We denote by k((G<0))κ the complement to

k((G≥0))κ.

• Our first goal is to define an exponential (logarithm)

on k((G))κ (for appropriate choice of G). From the above

discussion, we get:

Proposition 0.1 Set K = k((G))κ. Then (K,+, 0, <)

decomposes lexicographically as the sum:

(K,+, 0, <) = k((G<0))κ ⊕ k((G≥0))κ . (2)

(K>0, ·, 1, <) decomposes lexicographically as the prod-

uct:

(K>0, ·, 1, <) = Mon (K)× U>0
v (3)

Proposition 0.1 allows us to achieve our goal in two main

steps; by defining the logarithm on Mon (K) and on U>0
v .

11



The Main Step

Theorem 0.2 Let Γ be a chain, G = (RΓ)κ and K =

R((G))κ. Assume that

l : Γ→ G<0

is an isomorphism of chains. Then l induces an iso-

morphism of ordered groups (a logarithm)

log : (K>0, ·, 1, <) −→ (K,+, 0, <)

as follows: given a ∈ K>0, write a = tgr(1 + ε) (with

g =
∑

γ∈Γ gγ1γ, r ∈ R>0, ε infinitesimal), and set

log(a) := −
∑
γ∈Γ

gγt
l(γ) + log r +

∞∑
i=1

(−1)(i−1)ε
i

i
(4)

This logarithm satisfies

v(log tg) = l(min support g) (5)

Moreover, log satisfies GA if and only if

l(min support g) > g for all g ∈ G<0 . (6)

*******
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Getting such isomorphisms l:

Let Γ be any chain, G = (RΓ)κ and K = R((G))κ. Then

ι : Γ→ G<0 defined by γ 7→ −1γ

is an embedding of chains, and gives rise to prelogaritm

on K. However, this prelogarithm is neither surjective nor

does it satisfy GA.

• To get a prelogarithm satisfying GA, we choose σ ∈
Aut (Γ) with the property that

σ(γ) > γ for all γ ∈ Γ (7)

(We say that σ is an increasing automorphism). We set

l = ι ◦ σ. Now

l : Γ→ G<0 defined by γ 7→ −1σ(γ)

is an embedding of chains satisfying (6), so gives rise to a

prelogaritm on K satisfying GA-

• To get a surjective prelogarithm, we have to modify Γ

as follows:
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Proposition 0.3 Let Γ 6= ∅ be a given chain. There is

a canonically constructed chain Γκ ⊇ Γ together with

an isomorphism of ordered chains

ικ : Γκ → G<0
κ

where Gκ := (RΓκ)κ. Moreover, every increasing σ ∈
Aut (Γ) extends canonically to an increasing σκ ∈ Aut (Γκ)

We call the pair (Γκ, ικ) the κ-th iterated lexicographic

power of Γ.

Procedure of constructing the Exponential-Logarithmic

field of κ-bounded series over (Γ, σ): Let Γ be given

and σ an increasing automorphism.

• Define Γκ, Gκ, ικ, and σκ as above.

• Set K := R((Gκ))κ and l := ικ ◦ σκ. For a ∈ K>0

write a = tgr(1 + ε) where g =
∑

γ∈Γ gγ1γ, r ∈ R>0, ε

infinitesimal, then

log(a) := −
∑
γ∈Γ

gγt
−1σκ(γ) + log r +

∞∑
i=1

(−1)(i−1)ε
i

i
(8)

• Set exp = log−1.

• (K, exp) is a model of Tan,exp.
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Exponential-Logarithmic Equivalence.

• Let Γ be a chain and σ ∈ Aut (Γ) an increasing auto-

morphism. By induction, we define the n-th iterate of

σ: σ1(γ) := σ(γ) and σn+1(γ) := σ(σn(γ)). Define an

equivalence relation on Γ as follows: For γ, γ′ ∈ Γ, set

γ ∼σ γ′ iff ∃n ∈ N s.t. σn(γ) ≥ γ′ and σn(γ′) ≥ γ .

The equivalence classes [γ]σ of ∼σ are convex and closed

under application of σ (they are the convex hulls of the

orbits of σ). The order of Γ induces an order on Γ/∼σ.

The order type of Γ/∼σ is the rank of (Γ, σ).

Example 0.4 Let Γ = Z ~qZ (i.e. the lexicographically

ordered Cartesian product Z × Z) endowed with the au-

tomorphism σ((x, y)) := (x, y + 1). The rank of σ is Z.

Now consider the increasing automorphism

τ ((x, y)) := (x + 1, y). The rank of τ is 1.

• Let K be a real closed field and log a (GA)- logarithm

on K>0. Define an equivalence relation on K>0 \Rv:

a ∼log a′ iff ∃n ∈ N s.t. logn(a) ≤ (a′) and logn(a′) ≤ a

(where logn is the n-th iterate of the log). The order type of

the chain of equivalence classes is the logarithmic rank

of (K>0, log).
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We can compute the logarithmic rank of the Exponential-

Logarithmic field of κ-bounded series over (Γ, σ):

Theorem 0.5 The logarithmic rank of (R((Gκ))
>0
κ , log)

is equal to the rank of (Γ, σ).

This proof (as many other proofs) is based on the observa-

tion that every series is log-equivalent to a fundamental

monomial, that is a monomial of the form

t−1γ with γ ∈ Γ .

Next one observes that

for all γ, γ′ ∈ Γ : t−1γ ∼log t−1γ′ if and only if γ ∼σ γ′ .

This in turn is based on the following useful formula for

logn(t−1γ): by induction,

log n(t−1γ) = t−1σn(γ) .

Remark 0.6 If Γ admits automorphisms of distinct rank,

then (R((Gκ)) admits logarithms of distinct logarithmic

rank. We can also use this observation to introduce tran-

sexponentials, as illustrated in the next example.
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Example 0.7 Let Γ = Z ~qZ, σ((x, y)) := (x, y + 1),

(K, log) the corresponding κ-bounded model. For the au-

tomorphism τ ((x, y)) := (x + 1, y) , let L, respectively

T := L−1 be the corresponding induced logarithm and

exponential on K.

Effect of σ, τ on the fundamental monomials:

let γ = (x, y) ∈ Γ, then

log(t−1γ) = t−1σ(γ) ,

Whereas

L(t−1γ) = t−1τ(γ) ,

We see that, for any fundamental monomial X := t−1γ

and any n ∈ N we have:

L(X) < logn(X) .

Also, a simple computation (using the fact that σ and τ

commute) shows that also, for all n ∈ N:

T (X) > expn(X) .

Remark: Note that L :=
∑

lognX is a well-defined ele-

ment of ELκ(Γ, σ), this is the reason that this field cannot

be isomorphic to a field of Transseries (result with Tressl).

In Part II, we see how the logarithm determines the deriva-

tion. We obtain fields equipped with widely distinct deriva-

tions.
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PART II

Main Motivation: We want a “Kaplansky embedding

Theorem” for ordered differential fields. The κ-bounded

fields of power series are good candidates as “universal

domains”. But for this to make sense, we need first had

to endow them with a good differential structure.
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Derivations: We want to endow the field of κ-bounded

series over (Γ, σ) with a derivation d satisfying the follow-

ing properties:

• d is strongly linear, that is

d
∑
g

rgt
g =

∑
g

rgdt
g . (9)

• d satisfies strong Leibniz rule:

d(tg) = d(
∏

t
gγ
γ ) = tg

∑
gγ(d(γ)/γ) (10)

where g =
∑

γ∈Γ gγ1γ and tγ := t−1γ here and below to

simplify notations.

• d satisfies the rule for the logarithmic derivative:

d log a = da/a, for a > 0. (11)
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Reductions: The above rules direct us to perform a

number of steps in trying to define derivatives:

(i) From (9) and (10), it is clear that we need to determine

dtg, for g ∈ G<0.

(ii) From (11) determining dtg reduces to determining

d log tg.

(iii) By definition of log, this in turn reduces to deter-

mining d log t−1γ , for a fundamental monomial t−1γ with

γ ∈ Γ.

(iv) Applying (11) again we see that for any γ ∈ Γ0 we

have:

dt−1σ(γ) = t1γdt−1γ .
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Given d : Γ → K the problem is to find a criterion so

that the series defined via the strong Leibniz rule and

strong linearity make sense, i.e. the family of terms is

summable (the union of the supports is well-ordered and

to any value in this union corresponds only finitely many

members of the family). Using Ramsey theory type argu-

ments we show:

Theorem: d extends to a series derivation on K iff both

of the following conditions hold:

(C1) for any strictly increasing sequence γn ⊂ Γ and any

sequence τn ⊂ G s.t. τn in the support of d(tγn)/tγn for

all n, τn cannot be decreasing.

(C2) for any strictly decreasing sequences γn ⊂ Γ and

τn ⊂ G s.t. τn in the support of d(tγn)/tγn for all n, there

is N s.t.vG(τN+1 − τN) > γN+1.
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Example of a well-defined derivation on K obtained in this

way: set d on Γ by d(tγ)/tγ := t−1σ(γ).

Application: Axs solution of Schanuels conjecture

holds: if si − s(0) ∈ K are rationally independent for

i = 1, · · ·n then their exponentials are algebraically inde-

pendent.
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PART III

Of particular interest to us is the analysis of certain equiva-

lence relations on the surreal numbers. Conway introduced

and studied the ω-map to give a complete system ωNo (:=

the image of No under this map) of representatives of

the Archimedean additive equivalence relation. Exploit-

ing the convexity of the subclass of positive elements of

each equivalence class, Gonshor describes such a represen-

tative ωa as the unique surreal of minimal length in a

given class. By a simple modification of their arguments,

we first describe a complete system ωω
No

of representatives

of the Archimedean multiplicative equivalence relation.
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We then introduce and study what we call the κ-map to

give a complete system κNo (:= the image of No under

this map) of representatives of the exponential equivalence

relation. We observe that:

εNo ⊂ κNo ⊂ ωω
No ⊂ ωNo ⊂ No.

Finally, we introduce the notion of exp-log transseries (ELT)

fields, which unifies the notion of transseries and exp-log

series. We conjectured that No is an ELT field.
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Notation and Terminology:

• No is endowed with a partial ordering called the sim-

plicity ordering : a is simpler than b, write a <s b, iff a is

a proper initial sign subsequence of b.

• We use Conway ”cut” notation for surreals. For a pair

(L,R) with L < R of ”left” and ”right” subsets of No we

denote by 〈L|R〉 := a ∈ No the unique surreal of minimal

length representing the cofinality class of the cut. We call

it the cut between L and R.

• For any surreal number a, the representation a = 〈La |Ra〉
of a is called the canonical cut of a. We also denote the

canonical cut by a = 〈aL | aR〉 where aL and aR are gen-

eral elements of the canonical sets La := {b ∈ No ; b <

a, b <s a} and Ra := {b ∈ No ; b > a, b <s a}.
• (Conway Normal Form) The map Ω sending a to ωa ex-

tends exponentiation in base ω of ordinals. For a ∈ No,

ωa is the representative of minimal length of its Archimedean

equivalence class.

Corollary For any a ∈ No, ωω
a

is the representative of

minimal length in its equivalence class of comparability.

• (generalised epsilon numbers) ε(No) is the proper class

of all the fixed points of the map Ω : ∀a ∈ No, ωεa = εa.
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We shall now introduce a new class strictly between the

class of epsilon numbers and that of representatives of the

comparability classes.

The kappa map.

We study the exponential (logarithmic) equivalence rela-

tion for surreal numbers as we did for EL series, when we

considered the exponential rank.

Theorem The recursive formula

∀a ∈ No, κ(a) = κa := 〈expn(0), expn(κaL) | logn(κaR)〉

(where it is understood that n ∈ N) defines a map

κ : No → No

a 7→ κ(a) := κa

with values in No�1
>0 and such that:

(i) for any a, b ∈ No, a < b⇒ κa �exp κb;

(ii) there is a uniformity property for this formula (i.e.

the recursive formula does not depend on the choice

of the cut for a).
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