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I. Integer parts of totally ordered fields
and models of open induction.

In this talk “order” means total order.

(i) An integer part (IP) Z of an ordered
field K is a discretely ordered subring (1 is least
positive element) such that

∀x ∈ K ∃z ∈ Z : z ≤ x < z + 1 .

z := bxc Gauß bracket.
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(ii) Peano arithmetic (PA)

is the first-order theory, in the language L :=
{+, ·, <, 0, 1}, of discretely ordered commutative
rings with 1 whose set of non-negative elements
satisfies, for each formula Φ(x, y), the associated
induction axiom:

∀y [Φ(0, y)&∀x [Φ(x, y)→ Φ(x + 1, y)]→ ∀xΦ(x, y)] .
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(iii) K is real closed if every positive element
has a square root in K, and every polynomial in
K[x] of odd degree has a root in K.

Tarski(1931) K is real closed iff K is elemen-
tarily equivalent to (R,+, ·, 0, 1, <)

(iv) Open Induction (OI) is the fragment
of PA obtained by taking the induction axioms
associated to open formulas only.
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Theorem [Shepherdson]

IP’s of real closed fields are precisely the models
of OI.

We shall exploit this correspondence to con-
struct non-standard models of fragments of
arithmetic ...
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Remarks:

• Z is an IP of K iff K is archimedean ([Hölder]
iff K is isomorphic to a subfield of R).

We will only consider non-archimedean fields.

• An ordered field K need not admit an IP.

• In general, different IP’s need not be isomor-
phic, not even elementarily equivalent.
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Does every real closed field admit an IP?

If yes, how to construct such?

Let us first construct real closed fields...
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II. Algebraic constructions.

(DOAG) Divisible ordered abelian groups:

• Let Γ be any ordered set, {Aγ ; γ ∈ Γ} a family
of divisible archimedean groups (subgroups of R).

• For g ∈ ΠΓAγ , set

supportg := {γ ∈ Γ ; gγ 6= 0}

• The Hahn group is the subgroup of ΠΓAγ

HΓAγ := {g ; supportg is well-ordered in Γ}

ordered lexicographically by “first differences”.

• The Hahn sum is the subgroup

⊕ΓAγ := {g ; supportg is finite}
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Theorem [Hahn’s embedding Theorem (1907)]

Let G be a divisible ordered abelian group, with
rank Γ and archimedean components {Aγ ; γ ∈
Γ}. Then G is (isomorphic to) a subgroup of
HΓAγ.

Above, the rank and archimedean components
are valuation theoretic invariants of G and
can be described explicitly · · ·
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(RCF) Real closed fields:

• Let G be any divisible ordered abelian group,
k a real closed archimedean field (a real closed
subfield of R).

• The Hahn field is the field of generalized
power series

k((G)) = {s =
∑
g∈G

sgt
g; supports is well-ordered in G}

with convolution multiplication (Cauchy prod-
uct) and lexicographic order.
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The Hahn field K is a valued field: the map

v : K→ G ∪∞

v(s) := min supports

is a valuation with

• valuation ring O := k((G≥0))

• group of units O×

• valuation idealM := k((G+))

• residue field k

• value group G.
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Theorem [Kaplansky Embedding’s Theorem (1942)]:

Let K be real closed field with residue field k
and value group G. Then K is (analytically iso-
morphic to) a subfield of a field of k((G)).

Here, we mean the natural valuation, with valu-
ation ring the convex hull of Z in K.

So we know how to construct all DOAG and
all RCF, now we want to contruct IP of RCF
...
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III. Truncation Integer Parts

Direct sum (respectively product) decompositions:

k((G)) = k((G−)) ⊕ k ⊕ k((G+))
k((G))>0 = tG × k+ × [ 1 + k((G+)) ]

Indeed given s ∈ k((G)) write

• s = s<0 + s0 + s>0 and

• for s > 0 and g = v(s) = min supports, write

s = tg · sg · (1 + ε)

with sg ∈ k+, ε ∈ k((G+)).
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Proposition

Z := k((G−))⊕ Z is an IP of K.

Proof: Clearly, Z is a discrete subring. Let s ∈
k((G)). Let bs0c ∈ Z be the integer part of
s0 ∈ k. Define

zs =

{
s<0 + s0 − 1 if s0 ∈ Z and s>0 < 0,
s<0 + bs0c otherwise.

Clearly, zs ≤ s < zs + 1.

Observation: If F is a truncation closed
subfield of K (∀s : s ∈ F implies s<0 ∈ F ), then
ZF := [k((G−)) ∩ F ]⊕ Z is an IP of F .
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[Mourgues-Ressayre or Kaplansky revisited]

Let K be real closed field with residue field k
and value group G. Then K is (isomorphic to)
a truncation closed subfield of a field of k((G)),
thus K has an IP.

TIP • need not have cofinal set of primes.

• they are never normal

• they are never models of PA.

Does a RCF admit an IP which is a model of
normal open induction? of full PA?

First is still open, we now answer second...the
key is...
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IV. (IPA) Integer Parts that are models
of PA

FACT: [Exponentiation on the non-negative el-
ements of a model of PA] The graph of the ex-
ponential function 2y = z on N is definable by
an L-formula, and PA proves the basic proper-
ties of exponentiation. Thus any model of PA is
endowed with an exponential function exp.

As observed by D. Marker, this provides a
key connection to real closed exponential fields
which we shall now explain and exploit...
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Direct sum (respectively product) decompositions
hold for any RCFK with valuation ringO, value
group G and residue field K:

(K,+) = A⊕O

(K+, ·) = B×O×+
where A and B are unique up to isomorphism,
the rank of A is (isomorphic to)G−, its archimedean
components are (isomorphic to) K and B ' G.
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A RCF K has left exponentiation iff there
is an isomorphism from a group complement A
of O in (K,+, 0, <) onto a group complement B
of O×+ in (K+, ·, 1, <).

Let G be a DOAG with rank Γ and archimedean
components {Aγ : γ ∈ Γ}. We say that G is an
exponential group (in C) if Γ is isomorphic
(as linear order) to the negative cone G−, and
each Aγ is isomorphic (as ordered group) to C,
for some archimedean group C.
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[Characterization of countable exponential groups
(S.K)]

A countable DOAG G 6= 0 is an exponential
group if and only if G is isomorphic to the Hahn
sum⊕QC for some countable archimedean group
C 6= 0.
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Theorem:[S.K]

If K admits a left exponential, then the value
group G of K is an exponential group in K.

Corollary[Carl-D’Aquino-S.K]

If K admits an IPA (i.e K is an IPA real closed
field), then K admits a left exponential, there-
fore the value group ofK is an exponential group
in K.
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Remark:

There are plenty of DOAG that are not expo-
nential groups inK. For example, take the Hahn
groupG = Hγ∈ΓAγ where the archimedean com-
ponents Aγ are divisible but not all isomorphic
and/or Γ is not a dense linear order without end-
points (say, a finite Γ). Alternatively, we could
choose all archimedean components to be divis-
ible and all isomorphic, say to C, and Γ to be a
dense linear order without endpoints, but choose
the residue field so that K not isomorphic to C.
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A class of not IPA real closed fields.

Let k be any real closed subfield of R. Let G 6=
{0} be any DOAG which is not an exponential
group in k. Consider the Hahn field k((G)) and
its subfield k(G) generated by k and {tg : g ∈
G}. Let K be any real closed field satisfying

k(G)rc ⊆ K ⊆ k((G))

where k(G)rc is the real closure of k(G). Any
such K has G as value group and k as residue
field. By Corollary above, K does not admit an
IPA.
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IPA real closed fields are recursively saturated,
and the converse holds in the countable case [e.g.
Theorem 5.1 and 5.2 of Real closed fields and
models of Peano arithmetic; D’Aquino-Knight
-Starchenko (JSL 2010)].

We now relate IPA real closed fields to the
algebraic characterization of recursive satura-
tion given in D’Aquino-S.K-Lange

23



V. Recursively Saturated real closed fields.

Theorem [Valuation theoretic characterization
of recursively saturated real closed fields](D’Aquino-
S.K-Lange)

IfR is a real closed field with natural valuation v,
value group G. Then R is recursively saturated
in the language of ordered rings if and only if

1. The residue field is a Scott set S

2. G is recursively saturated with Archimedean
components all equal to S;

3. every pseudo Cauchy sequence of length ω
that is computable in an element of S over
some finite tuple of parameters in R has a
pseudo limit in R; and

4. every type realized by some finite tuple ā in
R is computable in an element of S.
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Therefore a countable field is an IPA real closed
field if and only if the above 4 conditions hold.

Moreover, the condition on the value group is
explicit via the following:
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Theorem [Valuation theoretic characterization
of recursively saturated divisible ordered abelian
groups] (Harnik-Ressayre and D’Aquino-S.K-Lange)

Let G 6= 0 be a DOAG. Then G is recursively
saturated in the language of ordered groups if
and only if

1. the value set Γ of G is a dense linear order
without endpoints, and

2. all Archimedean components of G equal a
common Scott set S.

And again the countable case is special...
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[Characterization of countable recursively satu-
rated DOAG](D-K-L)

A countable DOAG G 6= 0 is recursively satu-
rated if and only if G is isomorphic to ⊕QS for
some countable Scott set S.
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We conclude: if R is an IPA real closed field then
on the one hand the value group is exponential
in the residue field, and on the other hand the
value group is recursively saturated.

This begs the question:

what is the relationship between these 2 classes
of groups?

In general there are no implications either way.
However, comparing both characterizations in
the countable case, we clearly see that recursively
saturated DOAG implies exponential group:

Corollary: a countable exponential group in
C is recursively saturated if and only if C is a
countable Scott set.
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Definitions:

Let •L be a computable language. AnL-structure
M is recursively saturated if for every com-
putable set of L-formulas τ (x, ȳ) and every tu-
ple ā in M (of the same length as ȳ) such that
τ (x, ā) is finitely satisfiable in M , then τ (x, ā)
is realized in M .

• A subset T ⊂ 2<ω is a tree if every substring
of an element of T is also an element of T . If
σ, τ ∈ 2<ω, we let σ ≺ τ denote that σ is a
substring of τ . A sequence f ∈ 2ω is a path
through a tree T if for all σ ∈ 2<ω with σ ≺ f ,
we have σ ∈ T . For any σ ∈ 2<ω, the length of
σ, denoted by length(σ), is the unique n ∈ ω
satisfying σ ∈ 2n.
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• A nonempty set S ⊂ R is a Scott set if

1. S is computably closed, i.e., if r1, . . . rn ∈
S and r ∈ R is computable from r1⊕ . . .⊕rn
(the Turing join of r1, . . . , rn), then r ∈ S.

2. If an infinite tree T ⊂ 2<ω is computable
in some r ∈ S, then T has a path that is
computable in some r′ ∈ S.

Fact A Scott set is an Archimedean real closed
field.

• Let λ be an infinite ordinal. A sequence (aρ)ρ<λ
is pseudo Cauchy if for every ρ < σ < τ < λ
we have v(aσ − aρ) < v(aτ − aσ). We say
that x is a pseudo limit of the pseudo Cauchy
sequence (aρ)ρ<λ if v(x − aρ) = v(aρ+1 − aρ)
for all ρ < λ.

The End
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