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Hahn Groups and Hahn Fields.

The aim of this talk is to survey some of our work

on those Hausdorff - Hahn constructions, illustrating

their role in ordered structures, model theory, valua-

tion theory, transcendental number theory, models of

arithmetic and very recently in Conway’s field of sur-

real numbers.
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Part I: Lexicographic powers of ordered sets:

Hausdorff’s universal, saturated ηα - chains.

•Holland, W.- Kuhlmann, S.- McCleary, S.: Lexicographic

Exponentiation of chains, JSL 70, 389-409 (2005)

• Kuhlmann, F.-V. – Kuhlmann, S. – Shelah, S.: Func-

torial equations for lexicographic products, Proc. AMS

131 2969-2976 (2003)

Part II: Hahn Groups and Fields:

Hahn’s and Kaplansky’s embedding theorems, construc-

tions of universal saturated objects.

• D’Aquino, P. - Kuhlmann, S.: A note on ℵα-saturated

o-minimal expansions of real closed fields, to appear in

Algebra and Logic (2016)

• D’Aquino, P. – Kuhlmann, S. – Lange, K.: A valuation

theoretic characterization of recursively saturated real

closed fields, JSL 80, 194-206 (2015)

3



Part III: The κ-bounded EL- Hahn field EL(Γ, σ):

Constructing models of real exponentiation starting with

a chain Γ equipped with a right shift automorphism σ.

• Kuhlmann- Shelah: κ–bounded Exponential Logarith-

mic Power Series Fields, APAL 136, 284-296, (2005).

• Kuhlmann : Ordered Exponential Fields, Fields Insti-

tute Monograph Series vol. 12, AMS (2000)

Part IV: Hardy Type Derivations on EL- series

and applications to Ax-Schanuel’s conjecture:

Developing a general method to construct derivations

on EL(Γ, σ). Combinatorial criteria on supports.

• Kuhlmann- Matusinski- Shkop: A Note on Schanuel’s

Conjectures for Exponential Logarithmic Power Series

Fields, Archiv der Mathematik, 100, 431-436 (2013)

•Kuhlmann- Matusinski: Hardy type derivations in gen-

eralized series fields, J. of Algebra, 351, 185-203, (2012)

• Kuhlmann- Matusinski: Hardy type derivations on

fields of exponential logarithmic series, J. of Algebra,

345, 171-189 (2011)
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Part V: Integer parts of Hahn fields and models

of arithmetic:

Study of discretely ordered subrings of real closed fields

and their relation to models of fragments of Peano

arithmetic:

• Fornasiero- Kuhlmann, F.-V.- Kuhlmann, S.: Towers

of complements and truncation closed embeddings of

valued fields J. of Algebra, 323, 574-600 (2010)

• Biljakovic- Kotchetov-Kuhlmann: Primes and Irreducibles

in Truncation Integer Parts of Real Closed Fields, LNL

26, ASL, 42-65 (2006)

Part VI: The exponential rank of Gonshors ex-

ponentiation on the surreals.

Finding a complete system of representatives for the

log-exp equivalence classes; the class of kappa numbers.

• Kuhlmann- Matusinski: The exponential-logarithmic

equivalence classes of surreal numbers, ORDER 32, 53-

68 (2014)
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Lexicographic powers of ordered sets.

Let ∆ and Γ be (linearly i.e. totally) ordered
sets. Fix a distinguished element 0 ∈ ∆. The
lexicographic power ∆Γ is the following set:

∆Γ := {s : Γ→ ∆ ; support s is well-ordered}
= {s ∈

∏
γ∈Γ

∆ ; support s is well-ordered} ,

ordered lexicographically from the left,

that is “order by first differences”.

Here support s := {γ ∈ Γ ; sγ 6= 0}.
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F. Hausdorff and others studied their order
types, generalizing Cantor’s ordinal arithmetic
and construction of saturated and universal
models (the so-called ηα−sets) for the theory
of dense linear ordering without endpoints.
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• If α are β ordinals, then the lexicographic
power αβ

∗
has order type the ordinal αβ.

• Hausdorff’s ηα−set is constructed with the lex-
icographic power 2ℵα.

• Other Examples: ZN has the order type of the
set of irrationals, NN that of the set non-negative
real R+, 2N that of the Cantor set.
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Many fascinating problems (studied with W.C.
Holland and S. McCleary) such as: depen-
dence on the choice of the distinguished el-
ement 0, isomorphism of powers with same
base but different exponents or vice-versa, etc....
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Lexicographically ordered abelian goups.

If ∆ is an ordered abelian group, e.g. ∆ = R
for simplicity, we can endow the lexicographic
power RΓ, which we then denote by HΓR, with
an ordered abelian group structure.

Indeed, using now for s ∈ RΓ the notation

s =
∑
γ

sγ1γ

define pointwise addition:

s+ r =
∑
γ

sγ1γ +
∑
γ

rγ1γ :=
∑
γ

(sγ + rγ)1γ .

Obviously, the support of s+r is still well-ordered,
so s + r is well-defined.
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H. Hahn and others introduced and studied
these so-called Hahn-groups. They are used
for constructing saturated and universal mod-
els for the theory of divisible ordered abelian
groups:
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Theorem [Hahn Embedding’s Theorem]:

Every ordered abelian group G is isomorphic to
a subgroup of a Hahn group HΓR for a suitable
chain Γ.

More precisely, the invariant Γ is uniquely de-
termined by G, it is the so-called archimedean
“rank” ofG. So Hahn’s theorem generalizes O.L.
Hölder’s Theorem to the non-archimedean case.

Theorem [N.L. Alling - S.K.]:

Let Γ be an ηα−set, then the Hahn group HΓR is
an ℵα−saturated divisible ordered abelian group.

Let us continue enriching our lexicographic
powers...
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Lexicographically ordered fields.

If ∆ is an ordered field, e.g. ∆ = R for simplicity,
and Γ an ordered abelian group call it G, we
can endow the lexicographic power RG, which we
then denote by R((G)), with a field structure.

Indeed, using now for s ∈ RG the notation

s =
∑
g

sgt
g

define multiplication via convolution:

s.r =
∑
g

(
∑

g′+g′′=g

sg′rg′′ ) tg .
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Is s.r well-defined? That is, is it true that (i)
for every g ∈ G, ∑

g′+g′′=g

sg′rg′′

is a finite sum? and (ii) s.r has well-ordered
support? The answer is yes. Why?
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Summability

We need the following key notion. Let I be an
infinite index set, F := {si ∈ R((G)) ; i ∈ I} a
family of series, set

Support F :=
⋃
i∈I

support si .

F is said to be summable if:

(i) For any g ∈ Support F , the set

Sg := {i ∈ I | g ∈ support si} ⊆ I

is finite.

(ii) Support F is well-ordered.
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Write si =
∑
g

(si)gt
g for each si ∈ F . If F is

summable. Then∑
i∈I

si :=
∑

g∈SupportF

(
∑
i∈Sg

(si)g) t
g

is a well-defined element of R((G)) that we call
the sum of F .

Returning to multiplication: s.r is well-defined
because one can verify that the family

{tg′.r ; g′ ∈ support s }

is summable.
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W.Krull, I. Kaplansky and others studied the
field R((Γ)) while developing valuation theory,
again we have universality and saturation:

17



Non-archimedean Real Closed Fields

In what follows, G is non-trivial, i.e. G 6= 0.

If G is divisible, then R((G)) is a non-standard
model of the o-minimal Th(R, 0, 1,+,×, <).

Theorem [Kaplansky Embedding’s Theorem]:

Every real closed field R is isomorphic to a sub-
field of a field of generalized series R((G)) for a
suitable G.

More precisely, G is uniquely determined by R,
it is the so-called value group of R.

Theorem [N.L. Alling - S.K.]:

LetG be an ℵα−saturated divisible ordered abelian
group. Then the field of generalized series R((G))
is an ℵα−saturated real closed field.
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We have studied dense linear orderings with-
out endpoints, divisible ordered abelian groups,
real closed fields, all are so-called o-minimal
structures. Let us continue enriching our fields
of power series with further o-minimal struc-
ture....
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Exponentiation The subring R((G≥0)) of R((G))
(consisting of series with support contained in
the non-negative cone G≥0 of G) is a valuation
ring, with a unique maximal ideal R((G+)) con-
sisting of infinitesimal series, i.e. series with strictly
positive support.

Theorem [Neumann’s Lemma] Let ε ∈ R((G+))
and ci ∈ R, i ∈ N. Then {ciεi ; i ∈ N} is
summable. In particular one can define f (ε) for
any real analytic function. Define the exponen-
tial function on R((G+)) and the logarithm on
the multiplicative group of 1- units 1+R((G+)) :

exp(ε) :=
∑ εi

i!

log(1 + ε) :=
∑

(−1)i−1 εi

i
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How to define a total surjective exponential
function on R((G)), i.e. an ordering preserv-
ing isomorphism from the ordered additive group
(R((G)),+) onto the ordered multiplicative group
(R((G))>0 , × )?

21



Lexicographic Decomposition

We have the following direct sum (respectively,
multiplicative direct sum) decompositions:

R((G)) = R((G−)) ⊕ R ⊕ R((G+)),
R((G))>0 = tG × R+ × ( 1 + R((G+)) ).

Indeed given s ∈ R((G)) write

• s = s<0 + s0 + s>0 and

• for s > 0 and g := min support s, write

s = tg · c · (1 + ε)

with c ∈ R, c > 0, ε ∈ R((G+)).
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Left Exponentiation? It is thus necessary
and sufficient to construct a left exponential,
that is, an ordering preserving isomorphism from
the ordered additive group R((G−)) onto the or-
dered multiplicative group tG :

Theorem[K-K–Shelah]

R((G)) does not admit left-exponentiation (un-
less G is a proper class).

The “field” No of surreal numbers was in-
vented by J. Conway, studied by H. Gonshor,
D. Knuth, M. Kruskal, N.L. Alling, P. Ehrlich
and others. It admits left-exponentiation, how-
ever it is not a “field” since it is a proper
class!
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Construction of non-archimedean mod-
els of real exponentiation

Fix a regular uncountable cardinal κ.

• The κ-bounded Hahn group (RΓ)κ ⊆ RΓ

consists of all maps of which support has cardi-
nality < κ.

•The κ-bounded power series field R((G))κ ⊆
R((G)) consists of all series of which support has
cardinality < κ.
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Theorem 0.1 Let Γ be a chain, G = (RΓ)κ
and K = R((G))κ. Assume that

l : Γ→ G<0

is an isomorphism of chains. Then l in-
duces a log : (K>0, ·, 1, <) −→ (K,+, 0, <)
as follows: given a ∈ K>0, write a = tgr(1+ε)
with g =

∑
γ∈Γ gγ1γ, r ∈ R>0, ε infinitesimal.

Set

log(a) := −
∑
γ∈Γ

gγt
l(γ) + log r +

∞∑
i=1

(−1)(i−1)ε
i

i

Moreover, log satisfies Growth Axiom Scheme
if and only if

l(min support g) > g for all g ∈ G<0 . (1)
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Getting such isomorphisms l:

Let Γ be any chain,G = (RΓ)κ andK = R((G))κ.
Then

ι : Γ→ G<0 defined by γ 7→ −1γ

is an embedding of chains, and gives rise to
prelogaritm on K. However, this prelogarithm
neither satisfies GA nor is it surjective.

•To get a prelogarithm satisfying GA, we choose
σ ∈ Aut (Γ) a right shift, i.e.

σ(γ) > γ for all γ ∈ Γ (2)

We set l = ι ◦ σ. Now

l : Γ→ G<0 defined by γ 7→ −1σ(γ)

is an embedding of chains satisfying (1), so gives
rise to a prelogaritm on K satisfying GA
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To get a surjective prelogarithm, we have to mod-
ify Γ as follows:

Proposition 0.2 Fix a regular uncountable
cardinal κ and let Γ be a given chain. There
is a canonically constructed chain Γκ ⊇ Γ to-
gether with an isomorphism of ordered chains

ικ : Γκ → G<0
κ

where Gκ := (RΓκ)κ. Moreover, every right
shift σ ∈ Aut (Γ) extends canonically to a
right shift σκ ∈ Aut (Γκ) .

We call the pair (Γκ, ικ) the κ-th iterated lex-
icographic power of Γ.
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Summarizing the procedure of construct-
ing the Exponential-Logarithmic field of
κ-bounded series over (Γ, σ):

• Fix a regular uncountable cardinal κ, a chain
Γ and σ a right shift automorphism of Γ.

• Define Γκ, Gκ, ικ, and σκ as above.

• Set K := R((Gκ))κ and l := ικ ◦ σκ. For a ∈
K>0 write a = tgr(1 +ε) where g =

∑
γ∈Γ gγ1γ,

r ∈ R>0, ε infinitesimal, then

log(a) := −
∑
γ∈Γ

gγt
−1σκ(γ)+log r+

∞∑
i=1

(−1)(i−1)ε
i

i

• Set exp = log−1.

• (K, exp) is a model of Tan,exp.
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Derivations

We want a “Kaplansky embedding Theorem”
for ordered differential fields. The κ-bounded
fields of power series are good candidates as
“universal domains”. But for this to make
sense, we need first had to endow them with
a good differential structure.
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We want to endow the field of κ-bounded series
over (Γ, σ) with a derivation d satisfying the fol-
lowing properties:

• d is strongly linear, that is

d
∑
g

rgt
g =

∑
g

rgdt
g . (3)

• d satisfies strong Leibniz rule:

d(tg) = d(
∏

t
gγ
γ ) = tg

∑
gγ(d(tγ)/tγ) (4)

where g =
∑

γ∈Γ gγ1γ and tγ := t1γ here and
below to simplify notations.

• d satisfies the rule for the logarithmic deriva-
tive:

d log a = da/a, for a > 0. (5)
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Given d : tΓ → K the problem is to find a cri-
terion so that the series defined via the strong
Leibniz rule and strong linearity make sense, i.e.
the family of terms is summable. Using Ram-
sey theory type arguments we show:

Theorem: d extends to a series derivation on
K iff both of the following conditions hold:

(C1) for any strictly increasing sequence γn ⊂ Γ
and any sequence τn ⊂ G s.t. τn in the support
of d(tγn)/tγn for all n, τn cannot be decreasing.

(C2) for any strictly decreasing sequences γn ⊂ Γ
and τn ⊂ G s.t. τn in the support of d(tγn)/tγn
for all n, there is N such that vG(τN+1 − τN) >
γN+1.
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On the decidability of Texp.

A. Macintyre and A. Wilkie showed that Texp

is decidable if the real Schanuel conjecture
has a positive solution.

S. Schanuel conectured that if y1, · · · , yn ∈
R are linearly independent over Q, then the
transcendence degree over Q of the field

Q(y1, · · · , yn ; exp(y1), · · · , exp(yn))

is at least n.
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J. Ax proved Schanuel’s conjecture for formal
Laurent series without constant term.

Theorem[J. Ax]

Let yi ∈ R[[t]] such that yi−yi(0) are Q-linearly
independent, i = 1, · · · , n. Then

tdRR(y1, · · · , yn, exp(y1), · · · , exp(yn)) ≥ n+ 1

.

With M. Matusinski and A. Shkop we show that
this result holds for κ- bounded exponential-logarithmic
series.
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Integer Parts and Models of Arithmetic.

An integer part for an ordered field R is a
discretely ordered subring Z such that for each
r ∈ R, there exists some z ∈ Z with z ≤ r <
z + 1.

Shepherdson shows that the class of integer
parts of real closed fields coincides with the
class of models of open induction. He con-
structs an integer part of the field of Puiseux
series, in which primes are not cofinal. Many
open questions about integer parts of real closed
fields, and their primes and irreducibles arise
naturally.
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Theorem [J.-P. Ressayre and M.-H. Mourgues]

Z := R((Γ−)) ⊕ Z is an integer part of the real
closed field R((Γ)).

Proof: Clearly, Z is a discrete subring. Let s ∈
R((Γ)). Let bs0c ∈ Z be the integer part of s0 ∈
R. Define

zs =

{
s<0 + s0 − 1 if s0 ∈ Z and s>0 < 0,
s<0 + bs0c otherwise.

Clearly, zs ≤ s < zs + 1.

•M. Kotchetov we studied primes and irreducibles
in integer parts of real closed fields, we showed
that this integer part has a cofinal set of primes.

• With M. Carl, P. D’Aquino, we considered
other fragments of Peano Arithmetic:

Does R((Γ)) admit an integer part which is a
model of normal open induction, of full Peano
Arithmetic?
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Conwa’s field of Surreal Numbers

Of particular interest to us is the analysis of cer-
tain equivalence relations on the surreal num-
bers. Conway introduced and studied the ω-map
to give a complete system ωNo (:= the image
of No under this map) of representatives of the
Archimedean additive equivalence relation. Ex-
ploiting the convexity of the subclass of positive
elements of each equivalence class, Gonshor de-
scribes such a representative ωa as the unique
surreal of minimal length in a given class. By a
simple modification of their arguments, we first

describe a complete system ωω
No

of representa-
tives of the Archimedean multiplicative equiva-
lence relation.
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We then introduce and study what we call the
κ-map to give a complete system κNo (:= the im-
age of No under this map) of representatives of
the exponential equivalence relation. We observe
that:

εNo ⊂ κNo ⊂ ωω
No ⊂ ωNo ⊂ No.

Finally, we introduce the notion of exp-log transseries
(ELT) fields, which unifies the notion of transseries
and exp-log series. We conjectured that No is
an ELT field.

37



Notation and Terminology:

• No is endowed with a partial ordering called
the simplicity ordering : a is simpler than b, write
a <s b, iff a is a proper initial sign subsequence
of b.

• We use Conway ”cut” notation for surreals.
For a pair (L,R) with L < R of ”left” and
”right” subsets of No we denote by 〈L|R〉 :=
a ∈ No the unique surreal of minimal length
representing the cofinality class of the cut. We
call it the cut between L and R.

• For any surreal number a, the representation
a = 〈La | Ra〉 of a is called the canonical cut
of a. We also denote the canonical cut by a =
〈aL | aR〉 where aL and aR are general elements
of the canonical sets La := {b ∈ No ; b <
a, b <s a} and Ra := {b ∈ No ; b > a, b <s a}.
• (Conway Normal Form) The map Ω sending
a to ωa extends exponentiation in base ω of or-
dinals. For a ∈ No, ωa is the representative of
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minimal length of its Archimedean equivalence
class.

Corollary For any a ∈ No, ωω
a

is the rep-
resentative of minimal length in its equivalence
class of comparability.

• (generalised epsilon numbers) ε(No) is the proper
class of all the fixed points of the map Ω : ∀a ∈
No, ωεa = εa.
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We shall now introduce a new class strictly be-
tween the class of epsilon numbers and that of
representatives of the comparability classes.

The kappa map.

We study the exponential (logarithmic) equiva-
lence relation for surreal numbers as we did for
EL series, when we considered the exponential
rank.
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Theorem The recursive formula

∀a ∈ No, κ(a) = κa := 〈expn(0), expn(κaL) | logn(κaR)〉

(where it is understood that n ∈ N) defines a
map

κ : No → No
a 7→ κ(a) := κa

with values in No�1
>0 and such that:

(i) for any a, b ∈ No, a < b⇒ κa �exp κb

(ii) there is a uniformity property for this for-
mula (i.e. the recursive formula does not de-
pend on the choice of the cut for a).

The End
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