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Abstract.

This overview is intended to provide an “ atlas ” of what is known about ap-
proximations of the cone of positive polynomials (on a semialgebraic set KS) by
various preorderings (or the corresponding module versions). These approxi-
mations depend on the description S of KS, the dimension of the semi-algebraic
set KS, intrinsic geometric properties of KS (e.g. compact or unbounded), and
special properties of KS (symmetry, sparse representation)
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0. INTRODUCTION.

In algebraic geometry, we consider ideals of the polynomial ring and algebraic
varieties in affine space. In semi-algebraic geometry, we consider preorderings
of the polynomial ring and semialgebraic sets in affine space.

Notation and definitions: Let R[X] := R[X1, · · · , Xn] be the ring of polyno-
mials in n variables and real coefficients. A subset M ⊆ R[X] is a quadratic
module if 1 ∈ M , M is closed under addition and multiplication by squares
(i.e. a2f ∈ M , ∀a ∈ R[X] and f ∈ M).A quadratic preordering is a
quadratic module which is also closed under multiplication. The smallest pre-
ordering of R[X] is the set of sums of squares of R[X], denoted by

∑
R[X]2.

Given a finite subset S = {f1, ..., fs} of R[X], the smallest preordering con-
taining S (preordering finitely generated by S) is:

TS = { ∑

e∈{0,1}s

σef
e : σe ∈

∑
R[X]2, f1, · · · , fs ∈ S}

where f e := f e1
1 · · · f es

r , if e = (e1, · · · , es). The smallest module containing S
(module finitely generated by S) is:

MS = {σ0 + σ1f1 + ... + σsfs ; σe ∈
∑

R[X]2 .}
Let S = {f1, · · · , fs} ⊂ R[X], S defines a basic closed semialgebraic subset
of Rn:

K = KS = {x ∈ Rn : f1(x) ≥ 0, . . . , fs(x) ≥ 0}
Consider polynomials positive semi-definite on KS:

Psd(KS) := {f ∈ R[X] : f(x) ≥ 0 for all x ∈ KS}

Psd(KS) is a preordering in R[X] and TS ⊆ Psd(KS).

Hilbert’s 17th Problem and Stengle’s Positivstellensatz are concerned with the
issue of representation of positive semi-definite polynomials; motivated by the
question: when it true that Psd(KS) = TS ? More generally, we are concerned
with the issue of approximating Psd(KS) by “smaller” preorderings (modules):

T †
S = {f : ∀ real ε > 0 , f + ε ∈ TS}.

T ‡
S = {f : ∃q ∈ R[X] such that ∀ real ε > 0 , f + εq ∈ TS}.

TS := {f : L(f) ≥ 0 , ∀ lin. funct. L 6= 0 on R[X] s. t. L(TS) ≥ 0} .

We have:
TS ⊆ T †

S ⊆ T ‡
S ⊆ TS ⊆ Psd(KS) .
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• TS is saturated if Psd(KS) = TS.

• (†)S holds if T †
S = Psd(KS)

• (‡)S holds if T ‡
S = Psd(KS)

• S solves the KS– moment problem if TS = Psd(KS). Note that this is
equivalent to saying that TS is dense in Psd(KS).

Remark 0.1 (i) TS is the closure of TS in R[X] (for the finest locally convex
topology on R[X]).

Denote by Pd the (finite dimensional) vector space consisting of all polynomials
in R[X] of degree ≤ 2d, and by Td = TS ∩ Pd. The set Td is obviously a bf
cone in Pd, i.e., Td +Td ⊆ Td and R+Td ⊆ Td. Denote by T d the closure (in the
Euclidean topology) of Td in Pd. Then:

(ii) T ‡
S = ∪d≥0T d.

(iii) The containments (end of page 4) may be strict. The conjecture that
T ‡

S 6= TS was given in [K–M] and recently proved by T. Netzer.

(iv) All the above, except for Psd(KS) depend in general on the choice of the
description S of K = KS.

1. SATURATION.

In [S1] Scheiderer showed:

Theorem 0.2 If dim(KS) ≥ 3, then there exists a polynomial p(X) ∈ R[X]
such that p(x) ≥ 0 for all x ∈ Rn but p /∈ TS (so TS cannot be saturated).

Scheiderer’s result is intrinsic; under this hypothesis on K = KS, indepen-
dently of the chosen description S, and whether KS is compact or unbounded,
the preordering TS cannot be saturated.

In the same paper, he also shows another intrinsic result:

Theorem 0.3 If n = 2 and KS contains a cone of dimension 2, then there
exists a polynomial p(X) ∈ R[X] such that p(x) ≥ 0 for all x ∈ Rn but p /∈ TS

(so TS cannot be saturated).
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Low dimensional sets:

This left open the question formulated in [K-M]: what if KS ⊆ R2 does not
contain a cone of dimension 2? Are there compact/noncompact examples of
such KS for which TS is saturated? More recently, Scheiderer developed in
a series of papers [S2], [S3], [S4] several local global principles to determine
when a polynomial f ≥ 0 on KS belongs to the quadratic module MS. His
results generalize both Schmüdgen’s and Putinar’s Striktpositivstellensätze.
With these tools, he was able to produce the example that we were looking
for:

Example 0.4 The modules generated by:
S1 = {1 + x, 1− x, 1 + y, 1− y} (compact KS) and

S2 = {x, 1− x, y, 1− xy} (noncompact KS)

are saturated.

In [K-M-S], we studied saturated preorderings (modules) for subsets of the real
line. We discuss the case n = 1. To state [K-M-S; Theorem 2.2]. We need to
define some notions.

If K ⊆ R is a non-empty closed semi-algebraic set. Then K is a finite union
of intervals. It is easily verified that K = KN , for N the set of polynomials
defined as follows:

•If a ∈ K and (−∞, a) ∩K = ∅, then X − a ∈ N .

•If a ∈ K and (a,∞) ∩K = ∅, then a−X ∈ N .

•If a, b ∈ K, (a, b) ∩K = ∅, then (X − a)(X − b) ∈ N .

• N has no other elements except these.

We call N the natural set of generators for K.

We first consider the non-compact case:

Theorem 0.5 Assume that K = KS ⊆ R is not compact. Then TS is saturated
if and only S contains the natural set of generators of K (up to scalings by
positive reals).

For the compact case, we also have a criterion. Assume that KS has no isolated
points :

Theorem 0.6 Let KS be compact, S = {g1, · · · , gs}. Then TS is saturated if
and only if, for each endpoint a ∈ KS, there exists i ∈ {1, · · · , s} such that
x− a divides gi but (x− a)2 does not.
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What about the module version?

In [K-M-S] we asked whether MS = TS if KS ⊆ R is compact. Scheiderer
provided a positive answer using his local-global criteria. In [F] another ele-
mentary proof of this fact is given. Thus the above theorem is a criterion for
the quadratic module MS to be saturated.

2. THE DAGGER CONDITION.

In [Sc1] Schmüdgen proved the following intrinsic result:

Theorem 0.7 If KS is compact, then (†)S holds for TS.

A quadratic module M is archimedean if for all f ∈ R[X], there exists an
integer n ≥ 1 such that n − f and n + f ∈ M . Putinar proved the following
result:

Theorem 0.8 If MS is archimedean, then (†)S holds for MS.

Remark 0.9 (i) If TS (or MS) is archimedean then KS is compact.
(ii) Wörman showed that if KS is compact then TS is archimedean (providing
a proof of Schmüdgen’s Theorem via the Kadison-Dubois Theorem).
(iii) If KS is compact, MS need not be archimedean.

What if KS is not compact?

Apart from the non-compact examples of dimension ≤ 2 presented in the
previous section, no non-compact examples in dimension ≥ 3 are known. This
motivated considering (‡) instead, as we shall see in the next section.

3. THE DOUBLEDAGGER CONDITION.

Non-compact examples by dimension extension.

In [K-M] we construct a large number of non-compact examples where (‡)
holds.

Let S ⊆ R[X] finite and set p = 1 +
∑n

i=1 X2
i .

Denote by R[X, Y ] the polynomial ring in n + 1 variables X = X1, . . . , Xn, Y
and consider the finite set
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S ′ = S ∪ {1− pY,−(1− pY )} in R[X,Y ].

Then KS′ consists of those points on the hypersurface

H = {(x, y) ∈ Rn+1 | p(x)y = 1}

in Rn+1 which map to KS under the projection (x, y) 7→ x.

Theorem 0.10 (‡)′S holds.

Cylinders with compact base.

We continue to denote by R[X, Y ] the polynomial ring in n + 1 variables
X1, . . . , Xn, Y .

Consider a subset S = {g1, . . . , gs} of R[X, Y ] where the polynomials g1, . . . , gs

involve only the variables X1, . . . , Xn.

So KS has the form K × R, K ⊆ Rn. We further assume that K is compact.

We describe this situation by saying that KS is a cylinder with compact cross-
section. In [K-M] we prove:

Theorem 0.11 If KS is a cylinder with compact cross-section, then (‡)S

holds.

More precisely, let f ∈ R[X, Y ] is such that f ≥ 0 on KS. Let d ≥ 1 so that
the degree of f as a polynomial in Y is ≤ 2d. Set

q(Y ) := 3 + Y + 3Y 2 + Y 3 + . . . + 3Y 2d .

Then for all ε > 0, f + εq(Y ) ∈ TS.

Closed Polyhedra.

In [K-M-S] we develop a ”fiber criterion” for (‡) to hold on subsets of cylinders.
In particular, we get an application to generalized polyhedra.

Assume that KS is the basic closed semi-algebraic set in Rm, m ≥ 1, defined by
S = {`1, . . . , `s}, where `1, . . . , `s are linear, so KS is a closed polyhedron.
If KS is compact then, by [J–P], (†) holds for MS.

What if KS is not compact?

6



If KS contains a cone of dimension 2 then, by [K–M]
(‡) fails for TS.

In [K–M] we asked whether (‡) holds in the remaining case, i.e., when KS is
not compact and does not contain a cone of dimension 2.

In [K–M–S] we settle this question completely:

Theorem 0.12 Let P be a closed polyhedron in Rm defined by a finite set S
of linear polynomials.

(i) If P is compact then (†) holds for MS.

(ii) If P is not compact but does not contain a 2-dimensional cone then (‡)
holds for MS.

(iii) If P contains a 2-dimensional cone then (‡) fails for TS.

4. THE DENSITY CONDITION.

All the previous examples, compact or not, satisfying one of the previous
conditions considered, satisfy the density condition. In [Sc2], Schmüdgen gives
other methods to produce examples where the density condition holds. In [K-
M] we gave an intrinsic condition for the density condition to fail:

Theorem 0.13 The density condition fails whenever n ≥ 2 and KS contains
a cone of dimension 2.

In [P–S] a stronger intrinsic condition is given (if KS contains a “nasty curve”then
the density condition fails). The following example is particularly interesting:

Example 0.14 Consider

K := {(x, y) ∈ R2:−1 ≤ (x2 − 1)(y2 − 1) ≤ 0}

in the plane R2 = V (R) (see figure 1).

Arguing using the Powers-Scheiderer condition, one shows now that K-moment
problem is not finitely solvable.

Note however that the given set is very special; it displays interesting symme-
tries. This motivates the next section.
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5. SPECIAL SITUATIONS.

Invariant Sets.

We can extend the results of the previous sections in another direction.

The idea is to fix a distinguished subset B ⊂ R[X] and to attempt the various
approximations only for polynomials in B. That is, we want to study the
inclusions

TS ∩B ⊆ TS ∩B ⊆ Psd(KS) ∩B .

In [C–K–S], we investigated the particularly privileged situation when B is
the subring of invariant polynomials with respect to some action of a
group on the polynomial ring R[X].

Let us revisit the last example of the last section:

Example 0.15 K is G-invariant, where G = D4 the dihedral group of order
eight acting on R2 in the natural way (as the symmetry group of a square
centered at the origin).

The ring of invariants is R[x, y]G = R[u, v] with

u = x2 + y2, v = x2y2,

and the orbit variety W = R2//G is itself an affine plane.

The image of π: V (R) → W (R) is

Z = π(R2) = {(u, v) ∈ R2: u ≥ 0, v ≥ 0, u2 ≥ 4v}.

Since (x2 − 1)(y2 − 1) = v − u + 1, we have

π(K) = {(u, v) ∈ R2: v ≥ 0, 1 ≤ u− v ≤ 2}.
This is a (half-) strip in the (u, v)-plane (see figure 2):

The moment problem for π(K) is solved by the preordering N in R[u, v] =
W (R) generated by v, u − v − 1 and 2 − u + v (by [K-M-S]). This means
that the G-invariant K-moment problem is solvable (i.e. invariant linear func-
tional non-negative on the finitely generated preordering is represented by an
invariant measure).
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Positive polynomials on fibre products.

Throughout this section, a real algebraic, affine variety V ⊆ Rd is the common
zero set of a finite set of polynomials.

The algebra of regular functions on V (the coordinate ring of V ) is R[V ] =
R[X]/I(V ), where I(V ) is the radical ideal associated to V .

The non-negativity set of a subset S ⊂ R[V ] is

K(S) = {x ∈ V ; f(x) ≥ 0, f ∈ S}.

Let I be a non-empty set, endowed with a partial order relation i ≤ j. A
projective system of algebraic varieties indexed over I consists of a family of
varieties (affine in our case) Vi, i ∈ I, and morphisms fij : Vj −→ Vi defined
whenever i ≤ j, and satisfying the compatibility condition

fik = fijfjk if i ≤ j ≤ k.

The topological projective limit V = proj.lim(Vi, fij) is the universal object
endowed with morphisms

fi : V −→ Vi

satisfying the compatibility conditions

fi = fijfj, i ≤ j.

A directed projective system carries the additional assumption on the index set
that for every pair i, j ∈ I there exists k ∈ I satisfying i ≤ k and j ≤ k.

A finite partially ordered set I = {i0, ..., in} is a rooted tree if the order structure
is generated by the inequalities

i1 ≥ i0 and for every k > 1, ik ≥ ij(k) with j(k) < k.

In [K–P] We are concerned with finite projective systems of algebraic varieties.
The main result is the following:

Theorem 0.16 Let (Vi, fij) be a finite projective system of real affine vari-
eties, indexed over a rooted tree. Let Qi ⊂ R[Vi] be archimedean quadratic
modules, subject to the coherence condition f ∗ijQi ⊆ Qj. Let p ∈ ∑

i f
∗
i R[Vi] be

an element which is positive on the set ∩i∈If
−1
i K(Qi). Then p ∈ ∑

i f
∗
i Qi.
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We also consider fibre products of affine real varieties: Let Z = X1 ×Y X2 be
the fibre product of affine real varieties. Specifically

fi; Xi −→ Y, i = 1, 2,

are given morphisms and

Z = {(x1, x2) ∈ X1 ×X2; f1(x1) = f2(x2)}.

This is still an algebraic variety, with the ring of regular functions

R[X1 ×Y X2] = R[X1]⊗R[Y ]
R[X2].

Denote by ui : Z −→ Xi, i = 1, 2, the projection maps, so that: f1u1 = f2u2.

Proposition 0.17 With the above notation, let Qi ⊆ R[Xi], i = 1, 2, be
archimedean quadratic modules.
If an element p ∈ u∗1R[X1]+u∗2R[X2] is strictly positive on the set u−1

1 K(Q1) ∩
u−1

2 K(Q2), then p ∈ u∗1Q1 + u∗2Q2.

The proposition applies to the case of fibre products of affine spaces to recover
a result of [L].

Specifically, let X1 = Rn1×Rm, X2 = Rm× Rn2 and Y = Rm, while f1, f2 are the
corresponding projection maps onto Y . Denote by x1, y, x2 the corresponding
tuples of variables. Then one immediately identifies

Z = Rn1 × Rm × Rn2

and the proposition yields:

Corollary 0.18 Let Qx1,y, Qy,x2 be archimedean quadratic modules in the re-
spective sets of variables. Let
Π := (K(Qx1,y)× Rn2) ∩ (Rn1 ×K(Qy,x2)) ⊆ Z.

If a polynomial p(x1, y, x2) = p1(x1, y) + p2(y, x2) is positive on Π, then p ∈
Qx1,y + Qy,x2.
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