Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Claus Scheiderer Dipl.-Math. Aaron Kunert WS 2010/11

Übungen zur Vorlesung Algorithmische algebraische Geometrie

Blatt 8

Abgabe: Mittwoch 15. Dezember 2010, in der Vorlesung

Sei stets k ein Körper und K ein algebraisch abgeschlossener Oberkörper von k.

Aufgabe 29

Sei char $(k) \neq 2$, sei

$$q = \sum_{i,j=0}^{n} a_{ij} x_i x_j$$

eine quadratische Form über k mit $a_{ij}=a_{ji}$ für alle i,j. Hat die symmetrische Matrix $(a_{ij})_{0\leq i,j\leq n}$ mindestens Rang 3, so ist die Quadrik $V=\mathcal{V}_+(q)$ im \mathbb{P}^n kirreduzibel.

Aufgabe 30

Sei V eine irreduzible k-Varietät. Dann ist der Ring O(V) nullteilerfrei. Für jede nichtleere offene Teilmenge U von V ist die Restriktionsabbildung $\mathcal{O}(V) \to \mathcal{O}(U)$ injektiv.

Aufgabe 31

Begründe, daß die beiden folgenden Abbildungen wohldefiniert sind, und benutze SINGULAR, um ihre Bildmengen zu bestimmen:

- (a) $f: \mathbb{P}^1 \to \mathbb{P}^2$, $f(x_0: x_1) = (x_0^2 + x_1^2: 2x_0x_1: x_0^2 x_1^2)$; (b) $f: \mathbb{P}^2 \to \mathbb{P}^5$, $f(x_0: x_1: x_2) = (x_0^2: x_1^2: x_2^2: x_0x_1: x_0x_2: x_1x_2)$.

Aufgabe 32

Sei $x = (x_0, x_1)$.

(a) Seien $r, s \ge 1$, und seien $f = \sum_{i=0}^r a_i x_0^i x_1^{r-i}, g = \sum_{j=0}^s b_j x_0^j x_1^{s-j}$ (mit $a_i, b_j \in k$) zwei binäre Formen in $k[\mathbf{x}]$ mit $\deg(f) = r$ und $\deg(g) = s$. Die Resultante res(f,g) von f und g ist definiert als die $(r+s) \times (r+s)$ -Determinante

$$\operatorname{res}(f,g) \ = \ \det \left(\begin{array}{cccccc} a_0 & & & b_0 \\ a_1 & a_0 & & b_1 & b_0 \\ \vdots & a_1 & \ddots & \vdots & b_1 & \ddots \\ \vdots & \vdots & \ddots & a_0 & b_s & \vdots & \ddots & \ddots \\ a_r & \vdots & & a_1 & b_s & & \ddots & b_0 \\ & a_r & & \vdots & & & \ddots & b_1 \\ & & & \ddots & \vdots & & & \ddots & \vdots \\ & & & a_r & & & & b_s \end{array} \right).$$

Man zeige: $\operatorname{res}(f,g) = 0 \Leftrightarrow \operatorname{ggT}(f,g) \neq 1 \Leftrightarrow \operatorname{es\ gibt\ } (a_0:a_1) \in \mathbb{P}^1(K)$ mit $f(a_0,a_1) = g(a_0,a_1) = 0$.

(b) Sei $\mathtt{y}=(y_1,\ldots,y_n),$ seien $f,\,g\in k[\mathtt{x},\mathtt{y}]$ homogen bezüglich $\mathtt{x},$ und sei

$$X := \{(a,b) \in \mathbb{P}^1 \times \mathbb{A}^n : f(a,b) = g(a,b) = 0\}.$$

Sei $\pi \colon \mathbb{P}^1 \times \mathbb{A}^n \to \mathbb{A}^n$ die durch $\pi(a,b) = b$ definierte Projektion. Dann ist $R(y) := \operatorname{res}(f(x,y), g(x,y))$ (die Resultante bezüglich x) ein Polynom in k[y], und

$$\pi(X) = \{b \in \mathbb{A}^n \colon R(b) = 0\}.$$

Anleitung zu (a): Betrachte die lineare Abbildung

$$k[\mathtt{x}]_{s-1} \oplus k[\mathtt{x}]_{r-1} \ \rightarrow \ k[\mathtt{x}]_{r+s-1}, \quad (p,q) \mapsto pf + qg,$$

wobei $k[\mathtt{x}]_d$ den Raum aller Formen vom Grad d in $k[\mathtt{x}]$ bezeichnet, und wähle geeignete Basen für die Vektorräume.