Universität Konstanz Fachbereich Mathematik und Statistik O. Schnürer, A. Kunert SS 2013

Übungen zur Vorlesung Lineare Algebra II

Blatt 3

Abgabe: Freitag, 10. Mai 2013, 10.00 Uhr, in die Briefkästen neben F 411. Bitte verwenden Sie für jede Aufgabe ein eigenes Blatt, und schreiben Sie Ihren Namen und Ihre Übungsgruppe auf jedes Blatt.

Sei K stets ein Körper.

Aufgabe 9

Seien $\mathcal{B} = (b_1, \ldots, b_n)$ und $\mathcal{C} = (c_1, \ldots, c_n)$ Basen eines n-dimensionalen K-Vektorraums V. Sei $b_i = \sum_{j=1}^n \lambda_i^j c_j$. Schreibe $(c^*)^i$ als Linearkombination der $(b^*)^j$, $j = 1, \ldots, n$. Drücke zudem die Basiswechselmatrix $M(\mathrm{id}_{V^*})_{\mathcal{C}^*}^{\mathcal{B}^*}$ durch die Matrix $M(\mathrm{id}_{V})_{\mathcal{C}}^{\mathcal{B}}$ aus.

Aufgabe 10

Sei $A=(a_i^i)_{1\leq i,j\leq n}\in O(n)$ und sei $\|\cdot\|$ eine Norm Deiner Wahl auf $\mathbb{R}^{n\times n}$. Zeige

- (a) $|a_i^i| \le 1$ für alle $1 \le i, j \le n$
- (b) Die Menge $O(n) \subseteq \mathbb{R}^{n \times n}$ ist bezüglich $\|\cdot\|$ kompakt, also abgeschlossen und beschränkt.

Aufgabe 11

Sei $V = \mathbb{R}[t]_2 = \{f \in \mathbb{R}[t] \colon \deg(f) \leq 2\}$ versehen mit dem Skalarprodukt

$$\langle f, g \rangle := \int_0^1 fg \, dt, \quad f, g \in V.$$

Finde eine Orthonormalbasis $B=(v_0,\ldots,v_2)$ mit $v_k\in \operatorname{span}\{t^i\colon i\leq k\}$ für k=0,1,2.

Aufgabe 12

Sei V ein endlichdimensionaler euklidischer Vektorraum und $v \in V$ mit $\|v\|=1$. Betrachte die Abbildung $r_v\colon V\longrightarrow V,\, x\longmapsto x-2\,\langle x,v\rangle\,v$. Zeige

- (a) $r_v \in \text{End}(V)$ mit $r_v^2 = \text{id}_V$.
- (b) r_v ist orthogonal.
- (c) r_v ist diagonalisierbar und hat Determinante -1.

Wie lässt sich r_v anschaulich geometrisch beschreiben?