Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Claus Scheiderer Dipl.-Math. Aaron Kunert SS 2010

Übungen zur Vorlesung Zahlentheorie

Blatt 2

Abgabe: Donnerstag, 29. April 2010, 14.00 Uhr (Briefkasten auf F4)

Aufgabe 5

Zeige oder widerlege: \mathbb{Q} ist als \mathbb{Z} -Algebra endlich erzeugt, d.h. es gibt $n \in \mathbb{N}$ und $q_1, \ldots, q_n \in \mathbb{Q}$ mit $\mathbb{Q} = \mathbb{Z}[q_1, \ldots, q_n]$.

Aufgabe 6

Sei $A\subseteq B$ eine ganze Erweiterung von nullteilerfreien Ringen. Dann gilt: Genau dann ist A ein Körper, wenn B ein Körper ist.

Aufgabe 7

Seien $m, n \in \mathbb{Z}$ derart, daß m, n und mn keine Quadratzahlen sind. Man untersuche, wann die komplexe Zahl $\frac{1}{2}(\sqrt{m} + \sqrt{n})$ ganz über \mathbb{Z} ist.

Aufgabe 8

- (a) Sei G eine zyklische Gruppe der Ordnung $n \in \mathbb{N}$ (multiplikativ geschrieben), sei H eine Untergruppe von G, und sei d := [G : H]. Zu jedem $h \in H$ gibt es ein $g \in G$ mit $g^d = h$.
- (b) Sei L/K eine Erweiterung endlicher Körper. Dann ist jedes Element aus K die Norm eines Elements aus L.