Universität Konstanz Fachbereich Mathematik und Statistik Prof. Dr. Claus Scheiderer Dipl.-Math. Aaron Kunert SS 2010

Übungen zur Vorlesung Zahlentheorie

Blatt 9

Abgabe: Donnerstag, 17. Juni 2010, 14.00 Uhr (Briefkasten auf F4)

Aufgabe 33

 $\mathbb{Q}(\sqrt{-47})$ hat Klassenzahl h=5.

Aufgabe 34

Sei $m \in \mathbb{N}$ kein Quadrat, es bezeichne \sqrt{m} die positive Quadratwurzel. Betrachte die Ordnung $R = \mathbb{Z}[\omega]$ in $\mathbb{Q}(\sqrt{m})$ mit

- (a) $\omega = \sqrt{m}$,
- (b) $\omega = \frac{1}{2}(1 + \sqrt{m})$ (nur im Fall $m \equiv 1 \pmod{4}$)

und zeige: Die Grundeinheit von R ist $u=a+b\omega$ mit ganzen Zahlen $a\geq 0,\,b\geq 1$ derart, daß $\mathcal{N}(a+b\omega)=\pm 1$ und dabei b minimal ist.

Hinweis: Man überlege sich zunächst, daß für alle $x, y \in \mathbb{R}$ mit $x^2 - my^2 = \pm 1$ gilt: $x, y \geq 0 \Leftrightarrow x + y\sqrt{m} \geq 1$. Beachte: Es gibt einen einzigen Fall (welchen?), wo u durch die angegebene Bedingung noch nicht eindeutig festgelegt ist.

Aufgabe 35

Sei $m \in \mathbb{N}$ kein Quadrat, sei $K = \mathbb{Q}(\sqrt{m})$.

- (a) Betrachte die Ordnung $R = \mathbb{Z}[\sqrt{m}]$ von K. Hat m einen Primteiler $p \equiv -1 \pmod{4}$, so gilt $N_{K/\mathbb{Q}}(u) = 1$ für jede Einheit u von R.
- (b) Aussage (a) gilt auch, falls $m \equiv 0 \pmod{4}$ ist.
- (c) Aussage (a) gilt auch für die Ordnung $R = \mathbb{Z}[\frac{1}{2}(1+\sqrt{m})]$, falls $m \equiv 1 \pmod{4}$ ist.
- (d) $R = \mathbb{Z}[\sqrt{34}]$ hat eine Einheit von Norm -1.

Aufgabe 36

Unter den Summen $1+2+\cdots+n$ (mit $n\in\mathbb{N}$) kommen unendlich viele Quadratzahlen vor.