Universität Konstanz Fachbereich Mathematik und Statistik Jun.-Prof. Dr. Arno Fehm Aaron Kunert SS 2012

Übungen zur Vorlesung Zahlentheorie

Blatt 6

Aufgabe 21 (4 Punkte)

Sei $R\subseteq S$ eine ganze Erweiterung integrer Ringe. Zeigen Sie: Genau dann ist R ein Körper, wenn S ein Körper ist.

Aufgabe 22 (4 Punkte)

Sei $1 \neq d \in \mathbb{Z}$ quadrat
frei und $K = \mathbb{Q}(\sqrt{d})$ der zugehörige quadratische Zahlkörper. Es bezeichne $\mathcal{O}_K = \overline{\mathbb{Z}}^K$ den ganzen Abschluss von \mathbb{Z} in K. Zeigen Sie, dass

$$\mathcal{O}_K = \begin{cases} \mathbb{Z}[\sqrt{d}], & \text{falls } d \not\equiv 1 \mod 4 \\ \mathbb{Z}[\frac{1+\sqrt{d}}{2}], & \text{falls } d \equiv 1 \mod 4 \end{cases}$$

Aufgabe 23 (3 Punkte)

Zeigen Sie, dass der Ring $R=\mathbb{Q}[X,Y]/(Y^2-X^3)$ integer aber nicht ganzabgeschlossen ist.

Wenn Sie die Kurve mit der Gleichung $y^2=x^3$ (die Neilsche Parabel) zeichnen, werden Sie sehen, dass diese eine Spitze besitzt. In der Vorlesung Algebraische Geometrie werden wir R als Ring der Polynomfunktionen auf der Neilschen Parabel deuten und verstehen, was die Spitze damit zu tun hat, dass R nicht ganzabgeschlossen ist.

Aufgabe 24 (3 Punkte)

Sei R ein Ring, M ein endlich erzeugter R-Modul und $\varphi \in \operatorname{End}_R(M)$ ein Endomorphismus. Zeigen Sie, dass es $n \in \mathbb{N}$ und $a_0, \ldots, a_{n-1} \in R$ gibt mit

$$\varphi^n + a_{n-1}\varphi^{n-1} + \dots + a_0 = 0.$$

Abgabe: Donnerstag, 31. Mai 2012, 10 Uhr in die Briefkästen auf F4.