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Introduction

Introduction

Mode-coupling theory of glass-transition (MCT):

t

o(t) + To(t) + / Fo(t - s)d(s)ds =0, te[0,00), #(0)=1, (1)

0

T>0, coefficient of friction,
F:R—>R material-dependent kernel-function,
¢ :[0,00) = R correlation function.
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Mode-coupling theory of glass-transition (MCT):

t

o(t) + To(t) + / Fo(t - s)d(s)ds =0, te[0,00), #(0)=1, (1)

0

T >0, coefficient of friction,
F:R—>R material-dependent kernel-function,
¢ :[0,00) = R correlation function.

> The limit tILm ¢(t) (if exists) specifys, whether the regarded fluid
transitions into a glass (lim ¢ = 0), or not (lim ¢ # 0),
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Introduction

Mode-coupling theory of glass-transition (MCT):
t

o(t) + To(t) + / Fo(t - s)d(s)ds =0, te[0,00), #(0)=1, (1)

0
T >0, coefficient of friction,

F:R—>R material-dependent kernel-function,
¢ :[0,00) = R correlation function.

> The limit tILm ¢(t) (if exists) specifys, whether the regarded fluid
transitions into a glass (lim ¢ = 0), or not (lim ¢ # 0),
» initial condition ¢(0) = 1 is physically motivated,

Patrick Kurth ordinary integro-differential equations in glass rheology



Introduction

Introduction

Mode-coupling theory of glass-transition (MCT):

o) +79(t) + / Fo(t - s)d(s)ds =0, te[0,00), #(0)=1, (1)
0
T >0, coefficient of friction,

F:R—>R material-dependent kernel-function,
¢ :[0,00) = R correlation function.

> The limit tILn;o ¢(t) (if exists) specifys, whether the regarded fluid
transitions into a glass (lim ¢ = 0), or not (lim ¢ # 0),

» initial condition ¢(0) = 1 is physically motivated,

» w.l.o.g.. 7 =1 by substitution t = 7 - t.
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Introduction
Previous results

Aims

> problem (1) is a simplification of the following problem

t

o) + d(2) + (1) + / Fo(t—s)a(s)ds =0, (2)

0

where we neglect the term qS(t) under the physically sensible
assumption, that a limit of the solution exists.
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Introduction

Introduction
1s results

> problem (1) is a simplification of the following problem

t

o) + d(2) + (1) + / Fo(t—s)a(s)ds =0, (2)

0

where we neglect the term qS(t) under the physically sensible
assumption, that a limit of the solution exists.

» An example of F is F(x) = ax? + bx, a,b > 0.
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Previous results

Aims

Previous results

W. Gotze, L. Sjogren: General Properties of Certain Non-linear
Integro-Differential Equations, Journal of Mathematical Analysis and
Applications 195, 230-250 (1995):

Theorem

Let § >0 and F : [0,1+ §) — R an absolutely monotonic function, i.e.
i) Fe C>([0,1+6),R) and
i) Vx€[0,14+6): FO(x) >0 (k=0,1,2,...).

Then the problem (1) has a unique solution ¢ € C*([0,00),R), where ¢
is completely monotone, i.e.

Vt e [0,00): (1) ¢ (t) >0, (k=0,1,2,...).
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Introduction
Previous results

Time-depende: : Aims

W. Gotze, L. Sjogren:

Theorem

Let g € [0,1) be the maximal fixpoint of the equation

Then one has for the solution ¢: tim o(t) = g.
oo

If additionnally F'(g) < m holds, then one has for all n € Ny

lim t"(¢(t) —g) = 0.

t—o00

Patrick Kurth
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Introduction
Well-posedness Introduction
Asymptc iour Previous results

Time-dependent kernel-functions Aims

Open questions

W. Gotze, L. Sjogren:

Theorem
Let g € [0,1) be the maximal fixpoint of the equation

Then one has for the solution ¢: tim o(t) = g.
If additionnally F'(g) < ﬁ holds, then one has for all n € Ny

lim t"(é(t) —g) =0.

t—o00

Remark

In the work of Gétze and Sjogren a result of exponential konvergence of
the solution was presented.
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Aims

Patrick Kurth | equations in glass rheology



Introduction
Introduction
Previous results

Aims

Aims

» Extending the results on a wider class of kernel-functions.
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Introduction

Aims

» Extending the results on a wider class of kernel-functions.

» Extending the results on additional time-dependent kernels.
Examples in physics are

f(¢(t — S)) 2(,2-5(5)(15 _ O,

o(t) + o(t) + / T+2(t—s)

v > 0 shear rate and
B(8) + (1) +/h(t)h(t _ $)F(6(t—s))ds = 0.

0
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Introduction

Aims

» Extending the results on a wider class of kernel-functions.

» Extending the results on additional time-dependent kernels.
Examples in physics are

f(¢(t — S)) 2(,2-5(5)(15 _ O,

o(t) + o(t) + / T+2(t—s)

0
v > 0 shear rate and
t

¢(t)+q's(t)+/h(t)h(t—s)f(qs(t—s))ds —0.

» Asymptotic behaviour in case of F/'(g) = Tar
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Well-posedness Bounded kernel

Well-posedness: bounded kernel-functions

We consider the problem

t

o) + d(t) + / Flot— )ds)ds =0, o0)=1,  (3)

0

where F : R — R is bounded and locally Lipschitz-continuous.
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Well-posedness Bounded kernel

Well-posedness: bounded kernel-functions

We consider the problem

t

o) + d(t) + / Flot— )ds)ds =0, o0)=1,  (3)

0

where F : R — R is bounded and locally Lipschitz-continuous.
First, solutions ¢ € X := C*([0, N],R) (N > 0) are of interest.
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Well-posedness Bounded kernel

Well-posedness: bounded kernel-functions

We consider the problem

t
o0+ + [ Fo(t-)is)ds =0, 60)=1, ()
0
where F : R — R is bounded and locally Lipschitz-continuous.
First, solutions ¢ € X := C*([0, N],R) (N > 0) are of interest.

norm on X: ||f||x := max{||f]lec, ||'||cc }. With that, X is a Banach
space.
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Well-posedness

Well-posedness: bounded kernel-functions

We consider the problem

t

¢m+aﬂ+/ﬂdnnw@¢=m J0)=1.  (3)

0

problem (3) for t € [0, N] is equivalent to the following fixed point
problem

o(t) = To(t), te[0,N]
where T : X — X, ¢ +— T, with

t

Tdﬂ=1+/FW®D—aﬂ—¢U—QHMQMs (4)

0
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds
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Well-posedness

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds

aim: Solving the fixed point-problem ¢ € X : ¢ = T¢ by using
Banach fixed-point theorem
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aim:

problem:

Well-posedness

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds

Solving the fixed point-problem ¢ € X : ¢ = T¢ by using
Banach fixed-point theorem

The mixed term ¢(t — s)F(¢(s)) needs bounded F and ¢
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To(t) =1+ [ F(¢(s)) — ¢(s) — ¢(t — s)F(6(s))ds

0

aim: Solving the fixed point-problem ¢ € X : ¢ = T¢ by using
Banach fixed-point theorem

problem:  The mixed term ¢(t — s)F(¢(s)) needs bounded F and ¢

Lemma
Let a, k > 0 and

M.y := {f € X : f(0) = 1, |f(x)| < ae®™,|f'(x)| < ae®,0 < x < N}.
Then one has

T(Ma,k) g Ma,k
for a, k sufficiently large.

Patrick Kurth
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Well-posedness

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds

proof:
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Well-posedness

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds

proof: Let C :=sup|F(x)|, p € M, .
x€R
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Well-posedness Bounded kernel

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds

proof: Let C :=sup|F(x)|, p € M, .
x€R

t
e~k To(t)] < 1+ e*kf/c +16(s)|e ek + Clg(s)|e ek ds
0

t t
<1+ NC+ a/ek(s*t)ds+ aC/ek(s*t)ds
0 0

1
§1+NC+;(a+aC)
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Well-posedness Bounded kernel

To(t) =1+ { F(o(s)) — ¢(s) — o(t — s)F(4(s))ds
proof: Let C :=sup|F(x)|, p € M, .
xeR ¢
e~k To(t)] < 1+ e*kf/c +16(s)|e ek + Clg(s)|e ek ds
0

<1+ NC+ a/ek(s*t)ds+ aC/ek(s*t)ds
0 0

1
§1+NC+;(a+aC)

Defining a := 2+ NC and k := 2(a+ aC) one has | T¢(t)| < aet.
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Well-posedness Bounded kernel

To(t) =1+ { F(6(5)) — () — B(t — 5)F(8(s))ds

proof: Let C :=sup|F(x)|, p € M, .
x€R

t
e~k To(t)] < 1+ e*kf/c +16(s)|e ek + Clg(s)|e ek ds
0

t t
<1+ NC+ a/ek(s*t)ds+ aC/ek(s*t)ds
0 0

1
§1+NC+;(a+aC)

Defining a := 2+ NC and k := 2(a+ aC) one has | T¢(t)| < aet.

analogously (a, k see above): | £ T¢(t)| < aek*
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Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

Remark

After restricting T on M, , we will use boundedness of ¢.
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Introduction
Well- Bounded kernel-functions
t LEWT

Monotonic kernel-function
Time-dependent -functions Examples
Open questions

Remark

After restricting T on M, , we will use boundedness of ¢.

Definition
Let a, k be as above. We define with oo > 0 the metric on M, x

dosk(f,8) = max{ sup e (“FRX|f(x) — g(x)],
0<x<N

sup e () - ()}
0<x<N

This metric is equivalent to the metric induced by | - ||x,
i.e. (M, k,datk) is a complete metric space.
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

Lemma
With o > 0 sufficiently large, T is a contraction on (M, k, dotk)-
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Lemma

With o > 0 sufficiently large, T is a contraction on (M, k, dotk)-
proof: Let C :=sup|F(x)|, L a Lipschitz constant of F on
xeR
[—ae N aekN], a, k as above, a > 0 and ¢y, ¢2 € M, k, then one has
e (T hi(8) = Tha(t)] < ka(@)dara(61,¢2)
with ki(a) := a%rk(L—i— 1+ C + aeNL).

Analogously we have

e TG (To)(t) — G(To)(t)] < ke(a)dar(d1, 02),
with ky(a) = (14 C + aeVL).

We now choose « large enough, that k(o) < 1,7 =1,2. 0

Patrick Kurth ordinary integro-differential equations in glass rheology



Introduction
Well-posedness Bounded kernel-functions
Asymg behaviour Monotonic kernel-function

Time-depende Exan

Since N > 0 is arbitrary, we have the following

Theorem

Let F: R — R be bounded and locally Lipschitz continuous.
Then the problem

t

8(8) + 36+ [ Flole— s)ils)ds =0, 4(0)=1

0

has a unique solution ¢ € C1(]0, 00), R).
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

Monotonic kernel-function
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Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

Monotonic kernel-function

Remark

Results for only bounded kernel-functions are not optimal because from
the physical point of view unbounded polynomial functions are of interest.
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Bounded kernel-functions
Asymp! Monotonic kernel-function

Time-dependent c Examples

Monotonic kernel-function

Remark

Results for only bounded kernel-functions are not optimal because from
the physical point of view unbounded polynomial functions are of interest.

Lemma

Let F : R — R be differentiable and monotonically increasing and let
# € CY([0,00),R) be a solution of

t

o(t) + (6) + / F(6(t — 5))o(s)ds,  6(0) = 1.

0

Then ¢ is strictly monotonically decreasing.

Patrick Kurth ordinary integro-differential equations in glass rheology



Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.

Assume that a t > 0 exists with ¢(t) = 0.
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Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.

Assume that a t > 0 exists with ¢(t) = 0.Let ' := inf{t > 0 : ¢(t) = 0}
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Well-posedness

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.
Assume that a t > 0 exists with ¢(t) = 0.Let ' := inf{t > 0 : ¢(t) = 0}

Differentiating the integro-differential equation comes to

t

(1+ F))(t) + d(t) + / Fi(o(t — 5))(t — 5)d(s)ds = 0.

0

Patrick Kurth ordinary integro-differential equations in glass rheology



Well-posedness oul rnel-functions
kernel-function

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.
Assume that a t > 0 exists with ¢(t) = 0.Let ' := inf{t > 0 : ¢(t) = 0}

Differentiating the integro-differential equation comes to

t

U+Fﬂ»an+éuyﬁ/ﬁwa—ng—gag¢=o

0

Since F’ > 0 we have for t € [0, t']

o(t) < —(1+ F(1))d(t).
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Well-posedness Soul rnel-functions
kernel-function

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.
Assume that a t > 0 exists with ¢(t) = 0.Let ' := inf{t > 0 : ¢(t) = 0}

Differentiating the integro-differential equation comes to

t

(1+ F))(t) + d(t) + / Fi(o(t — 5))(t — 5)d(s)ds = 0.

0
Since F’ > 0 we have for t € [0, t']
O(t) < —(1+ F(1))(t)-
With Gronwall's inequality we have

¢(t) < ef(l+F(1))tq's(0) — 7ef(l+F(1))t'
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Well-posedness Soul rnel-functions
kernel-function

proof:  Since #(0) = 1 holds, we have ¢(0) = —1 < 0.
Assume that a t > 0 exists with ¢(t) = 0.Let ' := inf{t > 0 : ¢(t) = 0}

Differentiating the integro-differential equation comes to

t

(1 FE) + 3(0) + [ F(6(t = )t - 9)i(s)ds = 0.
0
Since F’ > 0 we have for t € [0, t']
o(t) < —(1+ F(1))d(t).
With Gronwall's inequality we have

¢(t) < ef(l+F(1))tq's(0) — 7ef(l+F(1))t'

In particular we have ¢(t') < 0, contradiction! 0

Patrick Kurth ordinary integro-differential equations in glass rheology



Introduction
Well-posedness Bounded kernel-functions

Asymptotic behaviour Monotonic kernel-function
Time-dependent kernel-functions Examples

Open questions

Remark

Formal limit t — oo of
t

o(t) + 3(1) + / F(6(t - 5))d(s)ds = 0

o

holds (lim ¢(t) =0) F(g) = 55, whereg:= lim ¢(t).
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Bounded kernel-functions
Monotonic kernel-function

Examples

Remark

Formal limit t — oo of
t

o(t) + 3(1) + / F(6(t - 5))d(s)ds = 0

o

holds (lim ¢(t) =0) F(g) = 55, whereg:= lim ¢(t).

Expectation:
A fixed point g of this equation (if exists) fulfils g < ¢(t) < 1.

Patrick Kurth ordinary integro-differential equations in glass rheology



roduction
Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

Remark

Formal limit t — oo of
t

o(t) + 3(1) + / F(6(t - 5))d(s)ds = 0

o

holds (lim ¢(t) =0) F(g) = 55, whereg:= lim ¢(t).

Expectation:
A fixed point g of this equation (if exists) fulfils g < ¢(t) < 1.

If this is fulfilled, it will be enough so regard F only on the intervall [g,1]
and to work with the following kernel-function instead of F:

F(1), x>1
F(x) =4 F(x), g<x<1
F(g), x<g.
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Bounded kernel-functions
Monotonic kernel-function

Examples

Remark

Formal limit t — oo of
t

o(t) + 3(1) + / F(6(t - 5))d(s)ds = 0

o

holds (lim ¢(t) =0) F(g) = 55, whereg:= lim ¢(t).

Expectation:
A fixed point g of this equation (if exists) fulfils g < ¢(t) < 1.

If this is fulfilled, it will be enough so regard F only on the intervall [g,1]
and to work with the following kernel-function instead of F:

F(1), x>1
F(x) =4 F(x), g<x<1
F(g), x<g.

To preserve differentiability, it will be necessary, to work with an
approximation of F.

Patrick Kurth ordinary integro-differential equations in glass rheology



Introduction
Well-posedness Bounded kernel-functions
Asymptotic behaviour Monotonic kernel-function

Time-dependent kernel-functions Examples
Open questions

Lemma

Let N >0,e>0, F: R — R be Lipschitz continuous and bounded and
let F: R — R be continuous and bounded, with ||F — F||s < e.

Let ¢, : [0, N] = R be solutions of (1) for F resp. F.

Then there exists a constant k = (N, e, F) > 0:

16 = Plloo < KIIF = Flloo-

Patrick Kurth ordinary integro-differential equations in glass rheology



Bounded kernel-functions
Monotonic kernel-function

Time-depend Examples

Lemma

Let N >0,e>0, F: R — R be Lipschitz continuous and bounded and
let F: R — R be continuous and bounded, with ||F — F||s < e.

Let ¢, : [0, N] = R be solutions of (1) for F resp. F.

Then there exists a constant k = (N, e, F) > 0:

16 = Plloo < KIIF = Flloo-

proof: Let L be a Lipschitz constant of F, C = sup |F(x)|.
x€R

As a consequence of the proof of the existence theorem for bounded
kernel-functions we obtain

()| < ae"N = M, |(t)] < a.e*N = M., te]0,0),
where
a=2+ NC,k=2a+2aC,
a: =2+ N(C+e), ke =2a+2a(C +¢).
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Well-posedness oul rnel-functions
kernel-function

Remembering the fixed point equations
¢=Tio, &= T,

where  Ti¢(t) = —¢(s) — o(t —s)F(p(s))ds  and

T20(t) = —6(s) = ot — s)F(d(s))ds.

e
Pt
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Remembering the fixed point equations

¢=Tip, &= T,
where  Ti¢(t) = j: —¢(s) — o(t —s)F(p(s))ds  and

0

T29(t) —1+be(¢ — 9(s) = &(t — s)F(d(s))ds.

With this we have
t

|6(t) — 3(2)| =

0

+ [6(5) = 6(5)] + F(d(s)) [ — s)—o(t — 5)]
+6(¢ = 5) [F(3(5))~ F(3(5))+F(3(5)) — F(9(5))] os|

< (N+MN)||F = Ellao + (L+1+ C ++ ML) / 16(s) — 3(s)|ds.




Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

With Gronwall's inequality it follows
lp— oo < KIF = Fllo,

with & = (N + MN) + (N 4+ MN) (elb+1+CHetMON _ 1), 0
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Well-posedness Bounded nel-functions
Monotonic kernel-function

Examples

We can now prove the following theorem:
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Introduction
Well-posedness Bounded kernel-functions
Asymp Monotonic kernel-function

Time-depende: : Examples

We can now prove the following theorem:

Theorem
Let F: R — R, with
i) Ix <1:F(x)= l%’x—o,
ii) F is differentiable, monotonically increasing and (locally-)Lipschitz
continuous on [xg, 1].

Then there exists a unique solution ¢ € C*([0,0),R) of the problem

t

o(t) + (1) + / F(6(t — $))d(s)ds =0, 6(0) =1,

0

where ¢ is monotonically decreasing, with xo < ¢(t) <1, t € [0, 00).
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

proof: We define
F(1), x>1
F(x):=<¢ F(x), x<x<1, xeR
F(x0), x<xo
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

proof: We define
; F(1), x>1
F(x):=<¢ F(x), x<x<1, xeR
F(x0), x<xo
There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F.
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

proof: We define
F(1), x>1
F(x):=={ F(x), xo<x<1
F(x0), x<xo

, xX€eR.

There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F.

Let (Fn)nen € CO°(R,R) be a sequence of differentiable, bounded,

monotonically increasing functions, with ||F, — F|loc =3 0.
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Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

proof: We define
; F(1), x>1
F(x):=<¢ F(x), x<x<1, xeR
F(x0), x<xo
There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F.

Let (Fn)nen € CO°(R,R) be a sequence of differentiable, bounded,

monotonically increasing functions, with ||F, — F|loc =3 0.

One has for all n € N: The problem (1) with F,, has a unique solution
én € CL([0,00),R), where ¢, is monotonically decreasing.
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Well-posedness

Examples

proof: We define
; F(1), x>1
F(x):=<¢ F(x), x<x<1, xeR
F(x0), x<xo
There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F.

Let (Fn)nen € CO°(R,R) be a sequence of differentiable, bounded,

monotonically increasing functions, with ||F, — F|loc =3 0.

One has for all n € N: The problem (1) with F,, has a unique solution
én € CL([0,00),R), where ¢, is monotonically decreasing.

One has for all N > 0: |[¢n — &l coo,ng) < K(N)[IFn — Fll =50,
i.e. ¢ is monotonically decreasing.
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Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

proof: We define
; F(1), x>1
F(x):=¢ F(x), x<x<1, xeR
F(x0), x<xo
There exists a unique solution ¢ € C1(]0, 00),R) for the problem (1)

with F, where ¢ is monotonically decreasing.
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Well-posedness

kernel- functlon

proof: We define
F(1), x>1
F(x):=¢ F(x), x<x<1, xeR
F(x0), x<xo
There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F, where ¢ is monotonically decreasing.
With this and the integro-differential etquation one obtains

M0 = —oln) - [ Fole - s)is)ds
0
> (14 F(0))d(t) + F(x)
Gm:,,,;,a// PO e—(1+l-—(x0))t+ —(1+F(xo))( (xo)ds
/e

Flx0)  Feo=Fto)
1 + F(Xg)

Y
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Well-posedness Bounded kernel-functions
Monotonic kernel-function

Examples

proof: We define
; F(1), x>1
F(x):=<¢ F(x), x<x<1, xeR
F(x0), x<xo
There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F, where ¢ is monotonically decreasing.
With this and the integro-differential equation one obtains

0 <o(t) <1, te0,00).
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Well-posedness

Examples

proof: We define

; F(1), x>1

F(x):=<¢ F(x), x<x<1, xeR

F(x0), x<xo
There exists a unique solution ¢ € C*([0,00),R) for the problem (1)
with F, where ¢ is monotonically decreasing.
With this and the integro-differential equation one obtains
0 <o(t) <1, te[o00).

= F(¢o(t)) = F(¢(t)), te[0,00), ie.. ¢isa solution of (1) with F.
U
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Well-posedness Bounded kernel-functions
Monotonic nel-function

Examples

Examples

One can now treat the problem with the following functions (physical
background not ensured)
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Well-posedness Bounded kernel-functions
Monotonic nel-function

Examples

Examples

One can now treat the problem with the following functions (physical
background not ensured)

1. F(x) = sin(x), monotone on [0, 1],

Patrick Kurth ordinary integro-differential equations in glass rheology



Well-posedness 0 ed kernel-functions
Monotonic nel-function

Examples

Examples

One can now treat the problem with the following functions (physical
background not ensured)

1. F(x) = sin(x), monotone on [0, 1],

2. F(x) =X,
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Well-posedness Bounded kernel-functions

Monotonic kernel-function
Examples

Examples

One can now treat the problem with the following functions (physical
background not ensured)

1. F(x) = sin(x), monotone on [0, 1],

2. F(x) =X,

3. Polynomial functions with negative coefficients, e.g.
F(x) = —x? +2x
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Asymptotic behaviour
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Asymptotic behaviour

Time-dependent kernel-functions
Open questions

Asymptotic behaviour

Theorem
Let F: R — R, with
i) Ix <1:F(x)=7

1—xo’
ii) F is differentiable, monotonically increasing and (locally-)Lipschitz
continuous on [xg, 1].

Then the solution ¢ of the problem (1) converges to the maximum
intercept point of F with G, where G(x) = 2=, x € (—o0, 1).

1=>"
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Asymptotic behaviour
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
Onehasfor0 < t; <t

[Pt - snéte)s - Flee - 1)]

IA

[ Flote - i) - Flee - 1)] n

= h+bh

/t F(o(t — $))d(s)ds
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
Onehasfor0 < t; <t

[Pt - snéte)s - Flee - 1)]

IA

/ 1F(¢(t—s))¢(s)ds—F(g)(g—l)]+ | Fote-9)itsras

= h+bh

We have for the first addend
= ' [ Fle)its)as - Flele - 1)\ — |F(e)llé(t) — ]
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
Onehasfor0 < t; <t

[Pt - snéte)s - Flee - 1)]

IA

/ 1F(¢(t—s))¢(s)ds—F(g)(g—l)]+ [ Flote - s)its)as

= h+bh

We have for the first addend

t1 .
[ F@its)es - Flee - 1) = IF@lo(w) -
and for the second

ho< /|F (t—ds)ds = c/ (s

t—oo

Clle(t)—gl —lo(a)—gl) — Clo(ta) -l

t—o0
Il —

IN
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
Onehasfor0 < t; <t

[ Flote = snéte)s - Flee - 1)]

IA

/ 1F(¢(t—s))¢(s)ds—F(g)(g—l)]+ | Fote-9)itsras

= h+bh

We choose t; large enough, that we have for arbitrary € > 0
lim L+ h<e.
t—o00
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Asymptotic behaviour

t—o0

proof: g eR:¢(t) — g = 3IC:= sup |F(¢(t))|
te[0,00)
Onehasfor0 < t; <t

[ Flote = snéte)s - Flee - 1)]

IA

/ 1F(¢(t—s))¢(s)ds—F(g)(g—l)]+ | Fote-9)itsras

= h+bh

We choose t; large enough, that we have for arbitrary € > 0
lim L+ h<e.
t—o00

t—o0

=+ lim [ F(o(e - 9)is)ds = Fle)e - D).
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
One has (as seen above)

i [ ot~ s)itshas = Flele - 1)
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
One has (as seen above)

lim [ F(6(e— )d(s)ds = F(e)(e — 1)
0
Since ¢ € CY([0,00), R) with tILrQO ¢(t) = g, there exists a sequence

(tn)nen C [0,00) : tn =3 00, ¢(tn) =5 g, d(tn) =5 0.

Patrick Kurth ordinary integro-differential equations in glass rheology



Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
One has (as seen above)

im / F(6(t — 5))(s)ds = F(g)(g — 1).

t—o0

Since ¢ € CY([0,00), R) with tli)m ¢(t) = g, there exists a sequence

(tn)nEN g [0’ OO) : t" nif o0, (,ZS(t,,) nﬂf %) QZS(t,,) ”1))0 0
Integg;—DE /0 n F((;S(tn B 5))(;.5(5)(15 _ —(ﬁ(t,,) B (1.5(1.',,) n—bco —g
__& _
= Flg)= T4° G(g)
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Asymptotic behaviour

proof: dgeR:¢p(t) =F g = 3C:= sup )\F(gb(t))\
te|0,00
One has (as seen above)

im / F(6(t — 5))(s)ds = F(g)(g — 1).

t—o0

Since ¢ € CY([0,00), R) with tli)m ¢(t) = g, there exists a sequence

(tn)nen C [0,00) : tn =3 00, ¢(tn) =5 g, d(tn) =5 0.

frieegPE / CF(6(ty — )d(s)ds = —o(tn) — d(ta) " —g

= Fle)=1, =6

Since for all xo < 1, with F(xp) = G(x0): ¢(t) > xo, t € [0,00), ¢
converges to the maximum intercept point of F and G.
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Introduction
Well-posedness
Asymptotic behaviour

Time-dependent kernel-functions
Open questions

Remark

We define
X —1, x<

F ::{ 6,__X x>

F is bounded and monotonically increasing, with F(x) < G(x) for all
x € R.

Then there exists a unique solution ¢ € C*([0,),R) of (1) with F,
where ¢ monotonically decreasing, with tlgr;o ¢(t) = —o0,

NN

i.e. there are divergent solutions.
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Asymptotic behaviour

We now aim to prove polynomial convergency of solutions.
We start with the following lemma (without proof):
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We now aim to prove polynomial convergency of solutions.
We start with the following lemma (without proof):

Lemma

Let F : [0,1] — R be continuously differentiable with the following
conditions

i) F(x) < %5,x #0,

i) F(0)=0,

iii) F/(0) < 1.

Then one has a ¢ € (0,1), s.t. for all x € [0, 1)
F(x) < 77 —ex =t H(x)
x) < 7= —ex = H(X).

H is an absolutely monotone function.
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Theorem

Let F : [0,1] — R be continuously differentiable and monotonically
increasing with the following conditions

i) F(x) < %,x #0,
i) F(0) =0,
iii) F'(0) < 1.

Let ¢ be the solution of (1) with kernel-function F (convergent to 0).
Then there exists the improper integrals for all n € Ny

/Oo t"¢(t)dt und /oo t"F(o(t))dt.
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Asymptotic behaviour

proof: With previous lemma there exists ¢ € (0,1), s.t. for all x € [0,1)

F(x) < & —eox =: H(x).
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Asymptotic behaviour

proof: With previous lemma there exists ¢ € (0,1), s.t. for all x € [0,1)
FO) < 1= H(x)
x) < —— — gox =: H(x).
T 1-x c0
H is absolutely monotone, with H'(0) < 1. Then there exists ¢ € (0, 1)
and xo > 0, s.t. for all n € Np, x > xp
Gotze&Sjogren

/Xt”F(gZ)(t))dtS/Xt"H(ng(t))dt = (l—s)/xt"qﬁ(t)dt.

X0 X0 X0
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Asymptotic behaviour

proof: Hence we have for all n € Ny

X

/ " E((e)de < (1- <) [ oo (5)

X0 X0

Patrick Kurth ordinary integro-differential equations in glass rheology



Asymptotic behaviour

proof: Hence we have for all n € Ny

X

/ " E((e)de < (1- <) [ oo (5)

X0 X0
Integrating the integro-differential equation from x to x, we obtain

/XOX ¢(t)dt+/x: ¢5(t)dt+/x:jt (/Ot F(6(s))p(t — s) — F(¢(5))ds> dt—0.
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Asymptotic behaviour

proof: Hence we have for all n € Ny

/ " E((e)de < (1- <) / " tng(t)d. (5)

Integrating the integro-differential equation from x to x, we obtain

/X: ¢(t)dt+/x: ¢5(t)dt+/x:jt (/Ot F(6(s))p(t — s) — F(¢(S))ds> dt—0.

Since for all t € [0,00) F(¢4(t)) > 0 and ¢(t) > 0, we conclude

X0

/Xas(t)dt < $(x0) — H(x) + / F(o(t))de + / F(6(5))é(x0 — 5)ds

$=0,(5)

< olx)+(1—¢) / o(t) dt+/ F(¢(s))p(x0 — s)ds.
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Asymptotic behaviour

proof: Hence we have for all n € Ny

/ " E((e)de < (1- <) / " tng(t)d. (5)

Integrating the integro-differential equation from x to x, we obtain

/X: ¢(t)dt+/x: ¢5(t)dt+/x:jt (/Ot F(6(s))p(t — s) — F(¢(S))ds> dt—0.

Since for all t € [0,00) F(¢4(t)) > 0 and ¢(t) > 0, we conclude

X0

/ ()t < dlx0) — o(x) + / Floe)de + [ Flo(s)oto - 5)ds

$=0,(5)

< olx)+(1—¢) / o(t) dt+/ F(¢(s))p(x0 — s)ds.

indep. of x

1
= / H8)dt < Zo(x0) + © /O F(o(x — s))o(s)ds ™% .
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Asymptotic behaviour

proof: We conclude

/Oo¢(t)dt<oo and /oo F(6(8))dt < oo.
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Asymptotic behaviour

proof:
Multiplying the integro-DE with t” and integrating from xg to x we
obtain by a similar calculation

/X t"o(t)dt <C(xo) + n/

X0

X

t"1p(t)dt + /X t"F(p(t))dt

X0

+n /X : /O tX:”_lF(qb(s))qﬁ(t — s)dsdt,

where C(xp) only depends on integrals with integration limits 0 and x.
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Asymptotic behaviour

proof:
Multiplying the integro-DE with t” and integrating from xg to x we
obtain by a similar calculation

/X t"o(t)dt <C(xo) + n/

X0

X

t"1p(t)dt + /X t"F(p(t))dt

X0

+n /X : /O tX:”_lF(qS(s))qﬁ(t — s)dsdt,

where C(xp) only depends on integrals with integration limits 0 and x.
Following estimate was presented in the work of Goétze&Sjogren

n / X /0 " TE(0()) (e — s)dsdt

n—1

< nZ( "71 >/0X t”l"¢>(t)dt/ox t' F(p(t))dt.
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Asymptotic behaviour

proof: We conclude
X

/X t"o(t)dt < C(x0)+ n/x t"Lo(t)dt + (1 — a)/ t"(t)dt

X0 X0 X0

/X "1 p(t)dt /X t'F(o(t))dt

X0 X0

o n—1—i X i
/O t ¢>(t)dt/ t'F(o(t))dt

X0

/X t" 1 p(t)dt /XD t'F(o(t))dt

X0 0
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Asymptotic behaviour

proof: We conclude

/XX t"p(t)dt <

X

C(x )+n/xt”‘1 (t)dt+(1—a)/ t"(t)dt

+nz< -1 / =17 (1) /X:t"F(¢>(t))dt
/O t" 1 g(t) /X t'F(o(t))dt

X0

—nZ( . / e o) [ CF(o()d
+nZ( -1 /O "1 (1) /OXO t'F(o(t))dt.

)
=27
)
)

With a proof by induction, we obtain

i indep. of x n |ndep. of x
t"p(t)dt < and t F(¢ < oo
X0
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Asymptotic behaviour

proof: We conclude the existence of the following improper integrals

/O t"¢(t)dt and /0 t"F(o(t))dt

for all n € Ny. 0
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s
ic behaviour

proof: We conclude the existence of the following improper integrals

/Oo t"¢(t)dt and /OO t"F(o(t))dt
0 0
for all n € Ny. 0

Corollary (proof Gotze&Sjogren)

Let F : [0,1] = R be continuously differentiable and monotonically
increasing with the following conditions

i) F(x) < £%,x#0,

i) F(0)=0,

i) F/(0) < 1.
Let ¢ be the solution of (1) with kernel-function F (convergent to 0).
Then one has for all n € Ny

lim t"¢(t) = 0.

t—o0
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Asymptotic behaviour

For the last result, the restriction F’(0) < 1 was needed. The following

theorem is an input for the discussion of asymptotic behaviour in case of
F'(0) =1:
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Asymptotic behaviour

Time-dependent kernel-functions
Open questions

For the last result, the restriction F’(0) < 1 was needed. The following
theorem is an input for the discussion of asymptotic behaviour in case of
F'(0) =1:

Theorem
Let F : [0,1] — R be differentiable and monotonically increasing, with

dce (0,11 Vx €[0,1]: 0 < F(x) < c- x.
Then one has for the solution ¢ of (1) with F (convergent to 0)

Pp(t)<c2-t72, tel0,00).
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Asymptotic behaviour

proof:

trick Kurth ordinary integro- glass rheology



Asymptotic behaviour

proof: One has

% /0 B(t — s)p(s)ds = p(t) + /0 d(t — s)p(s)ds. (6)
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Asymptotic behaviour

proof: One has
& [ ote=9seras = s+ [(de-sptsas ©

By variation of constants, we obtain

9(t) / / #(s — 7))p(7)d7ds
/ / co(s — 7)o(r)drds

part.int.,c<1
< e fye” / / o(s — 7)p(7)dTds

—c/ o(t — s)p(s)ds + e~ t/o e*¢(s)ds.
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Asymptotic behaviour

proof:

We conclude

t)+et c/ d(t—s)o ds<1+/0e¢( s)+e° c/¢>s T)P(T)dTds.
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Asymptotic behaviour

proof:

We conclude

t)+et c/ d(t—s)o ds<1+/0e¢( s)+e° c/¢>s T)P(T)dTds.

With Gronwall's inequality, we have

c/0 (t — s)p(s)ds < et
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Asymptotic behaviour

proof:

We conclude
t)+e c/¢(ts ds<1+/e¢( +e° c/¢>s T)P(T)dTds.
0
With Gronwall's inequality, we have
t
c/ (t — s)p(s)ds < et
0

¢ monotone t
= e

QA1) t< et
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Asymptotic behaviour

proof:

We conclude
t)+e c/¢(ts ds<1+/e¢( +e° c/¢>s T)P(T)dTds.
0
With Gronwall's inequality, we have
t
c/ (t — s)p(s)ds < et
0

¢ monotone t
= e

QA1) t< et
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Introduction
Well-posedness
Asymptotic behaviour

Time-dependent kernel-functions
Open questions

Remark
Previous results were proved only in case of tlim ¢(t) = 0. By using the
—00

following transformations, we are able to generalize the results in case of
limits different from 0:
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Introduction
|

Remark

Previous results were proved only in case of tlim ¢(t) = 0. By using the
—00

following transformations, we are able to generalize the results in case of

limits different from 0:

We define

Fx) = [F((1 - g)x+8) — F@)](1—g) und d(r):= 28

l1-g

)
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Remark

Previous results were proved only in case of tlim ¢(t) = 0. By using the
— 00

following transformations, we are able to generalize the results in case of
limits different from 0:

We define
F(x) = [F(1—g)x+8) — Fg)l(1—g) und &(t) = W
one has

50+ -0 + [ CE3(s)d(t—s)ds =0, F0)=1.
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Remark

Previous results were proved only in case of tlim ¢(t) = 0. By using the
— 00

following transformations, we are able to generalize the results in case of
limits different from 0:

We define
F(x) = [F(1—g)x+8)— F(g)l (1 —g) und &(t) = W
one has
i)+ (1= )0+ [ F@e)Ie—)ds =0, 3(0) = 1.
Further, we define O(t) = d((1 — g)t),
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ic behaviour

el-functions

Remark
Previous results were proved only in case of tlim ¢(t) = 0. By using the
—00

following transformations, we are able to generalize the results in case of
limits different from 0:

We define
F(x) = [F((1— g)x+8) — F(g)l (1 —g) und &ﬂ:ﬁﬁ?gg
one has
i)+ (1= )0+ [ F@e)Ie—)ds =0, 3(0) = 1.
Further, we define O(t) = d((1 — g)t),

thus, we have

Mﬂ+ﬂﬂ+£¥wmﬁﬁﬂ$—m 50 =1
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ic behaviour

el-functions

Remark
Previous results were proved only in case of tlim ¢(t) = 0. By using the
—00

following transformations, we are able to generalize the results in case of
limits different from 0:

We define
F(x) = [F(1—g)x+8)— F(g)l (1 —g) und &(t) = W
one has
i)+ (1= )0+ [ F@e)Ie—)ds =0, 3(0) = 1.
Further, we define O(t) = d((1 — g)t),

thus, we have
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Time-dependent kernel-functions

Time-dependent kernel-functions
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Time-dependent kernel-functions

Time-dependent kernel-functions

We remember the physically relevant problem

o(t) + o(t) + /0 mas)ds =0, ()
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Time-dependent kernel-functions

Time-dependent kernel-functions

We remember the physically relevant problem

o(t) + o(t) + /0 mas)ds =0, ()

Thus, it is useful, to discuss kernel-functions of the type
F(x,s)=f(x)-g(s), F:R—=R, g:[0,00) >R
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Time-dependent kernel-functions

The problem

o)+ o)+ [ CHo(t - )t — 5)o(s)ds =0, 9(0) =1

is equivalent to the following fixed point problem

o(t) = 1+/0 F(0(s))g(s) — ¢(s) — F(o(s))g(s)d(t — s)ds
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Time-dependent kernel-functions

The problem

o)+ + [ (6l ~ Nele -~ is)os =0, o(0) =1
is equivalent to the following fixed point problem

o) =1+ [ FDB(S) - o(6) ~ F(oANe(5)ole — s

One can treat this problem by using Banach fixed point theorem
analogously to the previous chapter.
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Asymptotic

Time-dependent kernel
Open ques

Hence, we conclude the following existence theorem for bounded
kernel-functions:

Theorem

Let f : R — R, x — f(x) be bounded and locally Lipschitz continuous
and g : [0,00) = R, s — g(s) continuous.
Then the problem

o)+ 90+ [ H(o(t = )t — 5)9(s)ds = 0, 9(0) =1

has a unique solution ¢ € C*([0, ), R).
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Time-dependent kernel-functions

o(t) + (1) + /O F(6(t — 5))g(t — 5)d(s)ds = 0 (8)

We are interested in monotone solutions under some restrictions on f and
g. We will go ahead analogously to the previous chapter:
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Time-dependent kernel-functions

o(t) + (1) + /O F(6(t — 5))g(t — 5)d(s)ds = 0 (8)

We are interested in monotone solutions under some restrictions on f and
g. We will go ahead analogously to the previous chapter:

1. Differentiating (8) comes to

[L+ (O] 6(2) + (1)
+ [ £ = el = )il = 5)ils) + oLt - ) (¢ ~ 5)i(s) =0

0
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Time-dependent kernel-functions

o(t) + (1) + /O F(6(t — 5))g(t — 5)d(s)ds = 0 (8)

We are interested in monotone solutions under some restrictions on f and
g. We will go ahead analogously to the previous chapter:

1. Differentiating (8) comes to

[L+ (O] 6(2) + (1)
+ [ £ = el = )il = 5)ils) + oLt - ) (¢ ~ 5)i(s) =0

0

¢ is monotonically decreasing if one of the following cases is valid

f7>0,g>0 f>0 g <0
or and or
f'<0,g<0 f<0,g" >0
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Time-dependent kernel-functions

o(t) + (1) + /O F(6(t — 5))g(t — 5)d(s)ds = 0 (9)

We are interested in monotone solutions under some restrictions on f and
g. We will go ahead analogously to the previous chapter:

1. ¢ is monotonically decreasing if one of the following cases is valid

f'>0,g>0 f>0,g <0
or and or
f7<0,g<0 f<0,g >0
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Time-dependent kernel-functions

o(t) + (1) + /O F(6(t — 5))g(t — 5)d(s)ds = 0 (9)

We are interested in monotone solutions under some restrictions on f and
g. We will go ahead analogously to the previous chapter:

1. ¢ is monotonically decreasing if one of the following cases is valid

f'>0,g>0 f>0,g <0
or and or
f7<0,g<0 f<0,g >0

2. Formal limit t — oo of (9) comes to

f(x0) - Jim g(t) = 1%0)@ with lim ¢(t) = xp.

t—o0

A maximum fixed point of this equation (if ex.) is a candidate for a
limit of ¢.
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Introdu
Well
Asymptotic

Time-dependent kernel-functions
Open questions

Thus we are able to formulate the following theorems

Theorem (without proof)

Let g : [0,00) = R, s.t. the limit g := tILm g(t) exists.
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Asymptotic behaviour

Time-dependent kernel-functions
Open questions

Thus we are able to formulate the following theorems

Theorem (without proof)

Let g : [0,00) = R, s.t. the limit g := tlim g(t) exists.
—00
Let f : R — R such that a xg < 1 exists, with

X
f(XO).g’: g

1—X0.
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Introduction

Asymptotic behaviour

Time-dependent kernel-functions
Open questions

Thus we are able to formulate the following theorems

Theorem (without proof)

Let g : [0,00) = R, s.t. the limit g := tlim g(t) exists.
— 00
Let f : R — R such that a xg < 1 exists, with
Xo
1-— X0 ’
In addition to that one has the following conditions

f(x)-&8 =

i) flio,1 and g are differentiable, with

f'>0,g>0 f>0,g <0
or and or
f'<0,g<0 f<0,g">0
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Introduction

Asymptotic behaviour

Time-dependent kernel-functions
Open questions

Thus we are able to formulate the following theorems

Theorem (without proof)

Let g : [0,00) = R, s.t. the limit g := tlim g(t) exists.
— 00
Let f : R — R such that a xg < 1 exists, with
Xo
1-— X0 ’
In addition to that one has the following conditions

f(x)-&8 =

i) flio,1 and g are differentiable, with

f'>0,g>0 f>0,g <0
or and or
f'<0,g<0 f<0,g">0

ii) fli,1 is (locally-)Lipschitz continuous
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Thus we are able to formulate the following theorems

Theorem (without proof)

Let g : [0,00) = R, s.t. the limit g := tlim g(t) exists.
— 00
Let f : R — R such that a xg < 1 exists, with

- X0
flxo)-& = 1—xo

In addition to that one has the following conditions

i) flio,1 and g are differentiable, with

f'>0,g>0 f>0,g <0
or and or
f'<0,g<0 f<0,g">0

ii) flx,1) is (locally-)Lipschitz continuous

Then the problem (9) with f and g has a unique solution
¢ € CY([0,00),R), where ¢ is monotonically decreasing,
with xo < ¢(t) <1 for all t € [0, c0).
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Introdu

Time-dependent kernel-functions
Open questions

Theorem (without proof)

i) Under the conditions of the previous theorem, the solution ¢
converges to the maximum fixed point xo < 1 of the equation
Xo

f(XO)'§:ﬂ~
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Time-dependent kern
Open questions

Theorem (without proof)

i) Under the conditions of the previous theorem, the solution ¢

converges to the maximum fixed point xo < 1 of the equation
Xo

f(Xo)-g': 1—X0.

ii) If one has additionally
fl(Xo) -8 <

(1—x0)%’

then one has for all n € N at
Jim £7[6(e) o] = 0.
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Theorem (without proof)

i) Under the conditions of the previous theorem, the solution ¢
converges to the maximum fixed point xo < 1 of the equation
Xo

f(Xo)-g': 1—X0.

ii) If one has additionally
1
fl(Xo) -8 <

(1—x0)%’

then one has for all n € N at
lim £7[g(t) ~ xq] = 0.
i) If instead of (ii) one has
X0 X0

c
< _
el < T T T~ ST
with ¢ € (0,1] fa. (x,s) € [x,1] x [0, ),
then one has
[6(t) — %0l < (1—x0)*c™2t72, te[0,00).

Patrick Kurth ordinary integro-differential equations in glass rheology



Time-dependent kernel-functions

Applying these results to the physical example, we arrive at the following
result:
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Asymptotic be

Time-dependent kernel-functions
Open questions

Applying these results to the physical example, we arrive at the following
result:

Corollary

Let f : [0,1] — R be non-negative, differentiable, monotonically
increasing and (locally-)Lipschitz continuous, then the problem

f(o(t - s))

mé(ﬂds =0, ¢(0)=1

t

o0 +d(0)+ [

0

has a unique solution ¢ € C([0,00),R), where ¢ is monotonically

decreasing, with
lim t"¢(t) = 0.

t—o00
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s
Time-dependent

Remark

To treat the second physical example

o) + 80+ | HE)h(E = S)F(o(t — $))d(s)ds =0, 4(0) = 1.

h' needs to be locally bounded. This is obvious when one regards the
following equivalent fixed point problem

o0) = 1+ [ R()(5) - 9(s) ~ M (OAN)ole - )
//h’ r)f(¢(r))p(s — r)drds.

The limit of the solution ist then given by the maximal fixed point of the
following equation (o) = Xo ,

_ 1-—xo

where h := lim h(t).

t—o0
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Open questions

Open questions

» Not just polynomial convergency, but exponential convergency?
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Open questions

Open questions

» Not just polynomial convergency, but exponential convergency?

» Improvement of the asymptotic-results in case of F/(g) = ﬁ
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Open questions

Open questions

» Not just polynomial convergency, but exponential convergency?
» Improvement of the asymptotic-results in case of F/(g) = ﬁ

» Well-Posedness and asymptotic behaviour in case of unbounded,
non-monotone kernel-functions. A background is the following
example in physics

o0+ + [ g i =0, 6(0)=1
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Open questions

Open questions

> Treatment of ordinary integro-differential equations with
complex-valued kernel-functions. A background is the following
example of a coupled system in physics

$1(t) + widn(t) + w1/0 ﬂ(qsl(tl__s)i}ff__(t — s))él(s)ds Lo,

(e) + w20n(6) + 2 | Bloalt ‘12’(’22‘@“ — W) 2o,

fi, b ~linear,w; € C,un e R, A€ C,h eR, 91 €C 02 €R
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Open questions

Open questions

> Treatment of ordinary integro-differential equations with
complex-valued kernel-functions. A background is the following
example of a coupled system in physics

G0) +nin(e) e [ BOLZ Tl 9552
o0) +nin(0) + o [ B DAEGLEZI 5 2,

fi, b ~linear,w; € C,un e R, A€ C,h eR, 91 €C 02 €R

» Treatment of partial integro-differential equations
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Thanks for your attention
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