Well-posedness and asymptotic behaviour of ordinary integro-differential equations in glass rheology

Patrick Kurth Konstanz, 04.02.2011

Mode-coupling theory of glass-transition (MCT):

$$\phi(t)+ au\dot{\phi}(t)+\int\limits_0^tF(\phi(t-s))\dot{\phi}(s)ds=0,\quad t\in[0,\infty),\quad \phi(0)=1,\ (1)$$
 $au>0,\qquad ext{coefficient of friction,} \ F:\mathbb{R}\to\mathbb{R} \qquad ext{material-dependent kernel-function,}$

 $\phi: [0,\infty) \to \mathbb{R}$ correlation function.

Mode-coupling theory of glass-transition (MCT):

$$\phi(t)+ au\dot{\phi}(t)+\int\limits_0^tF(\phi(t-s))\dot{\phi}(s)ds=0,\quad t\in[0,\infty),\quad \phi(0)=1,\ (1)$$

$$au>0,\qquad \text{coefficient of friction,} \ F:\mathbb{R}\to\mathbb{R} \qquad \text{material-dependent kernel-function,}$$

 $\phi: [0,\infty) \to \mathbb{R}$ correlation function.

The limit $\lim_{t\to\infty} \phi(t)$ (if exists) specifys, whether the regarded fluid transitions into a glass ($\lim \phi = 0$), or not ($\lim \phi \neq 0$).

Mode-coupling theory of glass-transition (MCT):

$$\phi(t) + \tau \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \quad t \in [0, \infty), \quad \phi(0) = 1, \ (1)$$

$$\tau > 0 \qquad \text{coefficient of friction}$$

 $\begin{array}{ll} \tau>0, & \text{coefficient of friction,} \\ F:\mathbb{R}\to\mathbb{R} & \text{material-dependent kernel-function,} \\ \phi:[0,\infty)\to\mathbb{R} & \text{correlation function.} \end{array}$

- ► The limit $\lim_{t\to\infty} \phi(t)$ (if exists) specifys, whether the regarded fluid transitions into a glass ($\lim \phi = 0$), or not ($\lim \phi \neq 0$),
- initial condition $\phi(0) = 1$ is physically motivated,

Mode-coupling theory of glass-transition (MCT):

$$\phi(t) + \tau \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \quad t \in [0,\infty), \quad \phi(0) = 1, (1)$$

 $\begin{array}{ll} \tau>0, & \text{coefficient of friction,} \\ F:\mathbb{R}\to\mathbb{R} & \text{material-dependent kernel-function,} \\ \phi:[0,\infty)\to\mathbb{R} & \text{correlation function.} \end{array}$

- ► The limit $\lim_{t\to\infty} \phi(t)$ (if exists) specifys, whether the regarded fluid transitions into a glass ($\lim \phi = 0$), or not ($\lim \phi \neq 0$),
- initial condition $\phi(0) = 1$ is physically motivated,
- w.l.o.g.. $\tau = 1$ by substitution $t = \tau \cdot \hat{t}$.

▶ problem (1) is a simplification of the following problem

$$\phi(t) + \dot{\phi}(t) + \ddot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \qquad (2)$$

where we neglect the term $\ddot{\phi}(t)$ under the physically sensible assumption, that a limit of the solution exists.

▶ problem (1) is a simplification of the following problem

$$\phi(t) + \dot{\phi}(t) + \ddot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \qquad (2)$$

where we neglect the term $\ddot{\phi}(t)$ under the physically sensible assumption, that a limit of the solution exists.

An example of F is $F(x) = ax^2 + bx$, a, b > 0.

Previous results

W. Götze, L. Sjögren: General Properties of Certain Non-linear Integro-Differential Equations, Journal of Mathematical Analysis and Applications 195, 230-250 (1995):

Theorem

Let $\delta > 0$ and $F : [0, 1 + \delta) \to \mathbb{R}$ an absolutely monotonic function, i.e.

- i) $F \in C^{\infty}([0,1+\delta),\mathbb{R})$ and
- ii) $\forall x \in [0, 1 + \delta) : F^{(k)}(x) \ge 0 \ (k = 0, 1, 2, ...).$

Then the problem (1) has a unique solution $\phi \in C^{\infty}([0,\infty),\mathbb{R})$, where ϕ is completely monotone, i.e.

$$\forall t \in [0, \infty) : (-1)^k \phi^{(k)}(t) \ge 0, \quad (k = 0, 1, 2, \dots).$$

W. Götze, L. Sjögren:

Theorem

Let $g \in [0,1)$ be the maximal fixpoint of the equation

$$F(g)=\frac{g}{1-g}.$$

Then one has for the solution ϕ : $\lim_{t\to\infty} \phi(t) = g$.

If additionnally $F'(g) < \frac{1}{(1-g)^2}$ holds, then one has for all $n \in \mathbb{N}_0$

$$\lim_{t\to\infty}t^n(\phi(t)-g)=0.$$

W. Götze, L. Sjögren:

Theorem

Let $g \in [0,1)$ be the maximal fixpoint of the equation

$$F(g) = \frac{g}{1-g}.$$

Then one has for the solution ϕ : $\lim_{t\to\infty} \phi(t) = g$.

If additionnally $F'(g) < \frac{1}{(1-g)^2}$ holds, then one has for all $n \in \mathbb{N}_0$

$$\lim_{t\to\infty}t^n(\phi(t)-g)=0.$$

Remark

In the work of Götze and Sjögren a result of exponential konvergence of the solution was presented.

Extending the results on a wider class of kernel-functions.

- Extending the results on a wider class of kernel-functions.
- ► Extending the results on additional time-dependent kernels. Examples in physics are

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^trac{f(\phi(t-s))}{1+\gamma^2(t-s)^2}\dot{\phi}(s)ds=0,$$

 $\gamma >$ 0 shear rate and

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^th(t)h(t-s)f(\phi(t-s))ds=0.$$

- Extending the results on a wider class of kernel-functions.
- ► Extending the results on additional time-dependent kernels. Examples in physics are

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^t rac{f(\phi(t-s))}{1+\gamma^2(t-s)^2}\dot{\phi}(s)ds=0,$$

 $\gamma > 0$ shear rate and

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^th(t)h(t-s)f(\phi(t-s))ds=0.$$

▶ Asymptotic behaviour in case of $F'(g) = \frac{1}{(1-g)^2}$

We consider the problem

$$\phi(t) + \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \quad \phi(0) = 1,$$
 (3)

where $F : \mathbb{R} \to \mathbb{R}$ is **bounded** and locally Lipschitz-continuous.

We consider the problem

$$\phi(t) + \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \quad \phi(0) = 1,$$
 (3)

where $F : \mathbb{R} \to \mathbb{R}$ is **bounded** and locally Lipschitz-continuous.

First, solutions $\phi \in X := C^1([0, N], \mathbb{R})$ (N > 0) are of interest.

We consider the problem

$$\phi(t) + \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \quad \phi(0) = 1,$$
 (3)

where $F : \mathbb{R} \to \mathbb{R}$ is **bounded** and locally Lipschitz-continuous.

First, solutions $\phi \in X := C^1([0, N], \mathbb{R})$ (N > 0) are of interest.

norm on X: $||f||_X := \max\{||f||_{\infty}, ||f'||_{\infty}\}$. With that, X is a Banach space.

We consider the problem

$$\phi(t) + \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0, \quad \phi(0) = 1,$$
 (3)

problem (3) for $t \in [0, N]$ is equivalent to the following fixed point problem

$$\phi(t) = T\phi(t), \quad t \in [0, N]$$

where $T: X \to X, \phi \mapsto T\phi$, with

$$T\phi(t) = 1 + \int_{0}^{t} F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds. \tag{4}$$

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

aim: Solving the fixed point-problem $\phi \in X: \phi = T\phi$ by using Banach fixed-point theorem

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

aim: Solving the fixed point-problem $\phi \in X : \phi = T\phi$ by using

Banach fixed-point theorem

problem: The mixed term $\phi(t-s)F(\phi(s))$ needs bounded F and ϕ

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

aim: Solving the fixed point-problem $\phi \in X$: $\phi = T\phi$ by using

Banach fixed-point theorem

problem: The mixed term $\phi(t-s)F(\phi(s))$ needs bounded F and ϕ

Lemma

Let a, k > 0 and

$$M_{a,k} := \{ f \in X : f(0) = 1, |f(x)| \le ae^{kx}, |f'(x)| \le ae^{kx}, 0 \le x \le N \}.$$

Then one has

$$T(M_{a,k})\subseteq M_{a,k}$$

for a, k sufficiently large.

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

proof:

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

proof: Let
$$C := \sup_{x \in \mathbb{R}} |F(x)|, \ \phi \in M_{a,k}$$
.

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

$$\begin{aligned} & \text{proof:} \quad \text{Let } C := \sup_{x \in \mathbb{R}} |F(x)|, \ \phi \in M_{a,k}. \\ & e^{-kt} |T\phi(t)| \leq 1 + e^{-kt} \int\limits_0^t C + |\phi(s)| e^{-ks} e^{ks} + C |\phi(s)| e^{-ks} e^{ks} ds \\ & \leq 1 + NC + a \int\limits_0^t e^{k(s-t)} ds + aC \int\limits_0^t e^{k(s-t)} ds \\ & \leq 1 + NC + \frac{1}{k} (a + aC) \end{aligned}$$

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

proof: Let
$$C:=\sup_{x\in\mathbb{R}}|F(x)|,\;\phi\in M_{a,k}.$$

$$e^{-kt}|T\phi(t)|\leq 1+e^{-kt}\int\limits_0^tC+|\phi(s)|e^{-ks}e^{ks}+C|\phi(s)|e^{-ks}e^{ks}ds$$

$$\leq 1+NC+a\int\limits_0^te^{k(s-t)}ds+aC\int\limits_0^te^{k(s-t)}ds$$

$$\leq 1+NC+\frac{1}{L}(a+aC)$$

Defining a := 2 + NC and k := 2(a + aC) one has $|T\phi(t)| \le ae^{kt}$.

$$T\phi(t) = 1 + \int\limits_0^t F(\phi(s)) - \phi(s) - \phi(t-s)F(\phi(s))ds$$

$$\begin{aligned} & \text{roof:} \quad \text{Let } C := \sup_{x \in \mathbb{R}} |F(x)|, \; \phi \in M_{a,k}. \\ & e^{-kt} |T\phi(t)| \leq 1 + e^{-kt} \int\limits_0^t C + |\phi(s)| e^{-ks} e^{ks} + C |\phi(s)| e^{-ks} e^{ks} ds \\ & \leq 1 + NC + a \int\limits_0^t e^{k(s-t)} ds + aC \int\limits_0^t e^{k(s-t)} ds \\ & \leq 1 + NC + \frac{1}{k} (a + aC) \end{aligned}$$

Defining a := 2 + NC and k := 2(a + aC) one has $|T\phi(t)| \le ae^{kt}$.

analogously (a, k see above): $\left| \frac{d}{dt} T \phi(t) \right| \leq a e^{kt}$

Remark

After restricting T on $M_{a,k}$ we will use boundedness of ϕ .

Remark

After restricting T on $M_{a,k}$ we will use boundedness of ϕ .

Definition

Let a, k be as above. We define with $\alpha > 0$ the metric on $M_{a,k}$

$$d_{\alpha+k}(f,g) := \max \left\{ \sup_{0 \le x \le N} \frac{e^{-(\alpha+k)x}|f(x) - g(x)|,}{\sup_{0 \le x \le N} e^{-(\alpha+k)x}|f'(x) - g'(x)|} \right\}.$$

This metric is equivalent to the metric induced by $\|\cdot\|_X$, i.e. $(M_{a,k}, d_{\alpha+k})$ is a complete metric space.

Lemma

With $\alpha > 0$ sufficiently large, T is a contraction on $(M_{a,k}, d_{\alpha+k})$.

Lemma

With $\alpha > 0$ sufficiently large, T is a contraction on $(M_{a,k}, d_{\alpha+k})$.

proof: Let $C:=\sup_{x\in\mathbb{R}}|F(x)|$, L a Lipschitz constant of F on $[-ae^{kN},ae^{kN}]$, a,k as above, $\alpha>0$ and $\phi_1,\phi_2\in M_{a,k}$, then one has

$$\begin{split} e^{-(\alpha+k)t}|T\phi_1(t)-T\phi_2(t)|&\leq &k_1(\alpha)d_{\alpha+k}(\phi_1,\phi_2)\\ \text{with } k_1(\alpha):=\frac{1}{\alpha+k}(L+1+C+ae^{kN}L). \end{split}$$

Analogously we have

$$e^{-(\alpha+k)t}\left|\frac{d}{dt}(T\phi_1)(t) - \frac{d}{dt}(T\phi_2)(t)\right| \leq k_2(\alpha)d_{\alpha+k}(\phi_1,\phi_2),$$

with $k_2(\alpha) = \frac{1}{\alpha+k}(1+C+ae^{kN}L).$

We now choose α large enough, that $k_i(\alpha) < 1$, i = 1, 2.

Since N > 0 is arbitrary, we have the following

Theorem

Let $F:\mathbb{R}\to\mathbb{R}$ be bounded and locally Lipschitz continuous. Then the problem

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^tF(\phi(t-s))\dot{\phi}(s)ds=0,\quad \phi(0)=1$$

has a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$.

Monotonic kernel-function

Monotonic kernel-function

Remark

Results for only bounded kernel-functions are not optimal because from the physical point of view unbounded polynomial functions are of interest.

Monotonic kernel-function

Remark

Results for only bounded kernel-functions are not optimal because from the physical point of view unbounded polynomial functions are of interest.

Lemma

Let $F : \mathbb{R} \to \mathbb{R}$ be differentiable and monotonically increasing and let $\phi \in C^1([0,\infty),\mathbb{R})$ be a solution of

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^tF(\phi(t-s))\dot{\phi}(s)ds,\quad \phi(0)=1.$$

Then ϕ is strictly monotonically decreasing.

proof: Since $\phi(0)=1$ holds, we have $\dot{\phi}(0)=-1<0$.

proof: Since
$$\phi(0)=1$$
 holds, we have $\dot{\phi}(0)=-1<0$.

Assume that a t > 0 exists with $\dot{\phi}(t) = 0$.

proof: Since
$$\phi(0)=1$$
 holds, we have $\dot{\phi}(0)=-1<0$.

Assume that a t>0 exists with $\dot{\phi}(t)=0.$ Let $t':=\inf\{t>0:\dot{\phi}(t)=0\}$

proof: Since $\phi(0)=1$ holds, we have $\dot{\phi}(0)=-1<0$.

Assume that a t>0 exists with $\dot{\phi}(t)=0.$ Let $t':=\inf\{t>0:\dot{\phi}(t)=0\}$

Differentiating the integro-differential equation comes to

$$(1+F(1))\dot{\phi}(t)+\ddot{\phi}(t)+\int\limits_{0}^{t}F'(\phi(t-s))\dot{\phi}(t-s)\dot{\phi}(s)ds=0.$$

proof: Since $\phi(0)=1$ holds, we have $\dot{\phi}(0)=-1<0$.

Assume that a t>0 exists with $\dot{\phi}(t)=0.$ Let $t':=\inf\{t>0:\dot{\phi}(t)=0\}$

Differentiating the integro-differential equation comes to

$$(1+F(1))\dot{\phi}(t)+\ddot{\phi}(t)+\int\limits_{0}^{t}F'(\phi(t-s))\dot{\phi}(t-s)\dot{\phi}(s)ds=0.$$

Since $F' \geq 0$ we have for $t \in [0, t']$

$$\ddot{\phi}(t) \leq -(1+F(1))\dot{\phi}(t).$$

proof: Since $\phi(0) = 1$ holds, we have $\dot{\phi}(0) = -1 < 0$.

Assume that a t>0 exists with $\dot{\phi}(t)=0.$ Let $t':=\inf\{t>0:\dot{\phi}(t)=0\}$

Differentiating the integro-differential equation comes to

$$(1+F(1))\dot{\phi}(t)+\ddot{\phi}(t)+\int\limits_{0}^{t}F'(\phi(t-s))\dot{\phi}(t-s)\dot{\phi}(s)ds=0.$$

Since $F' \geq 0$ we have for $t \in [0, t']$

$$\ddot{\phi}(t) \leq -(1+F(1))\dot{\phi}(t).$$

With Gronwall's inequality we have

$$\dot{\phi}(t) \le e^{-(1+F(1))t}\dot{\phi}(0) = -e^{-(1+F(1))t}.$$

proof: Since $\phi(0) = 1$ holds, we have $\dot{\phi}(0) = -1 < 0$.

Assume that a t>0 exists with $\dot{\phi}(t)=0.$ Let $t':=\inf\{t>0:\dot{\phi}(t)=0\}$

Differentiating the integro-differential equation comes to

$$(1+F(1))\dot{\phi}(t)+\ddot{\phi}(t)+\int\limits_0^tF'(\phi(t-s))\dot{\phi}(t-s)\dot{\phi}(s)ds=0.$$

Since $F' \geq 0$ we have for $t \in [0, t']$

$$\ddot{\phi}(t) \leq -(1+F(1))\dot{\phi}(t).$$

With Gronwall's inequality we have

$$\dot{\phi}(t) \le e^{-(1+F(1))t}\dot{\phi}(0) = -e^{-(1+F(1))t}.$$

In particular we have $\dot{\phi}(t') < 0$, contradiction!

Formal limit $t \to \infty$ of

$$\phi(t) + \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0$$

holds
$$(\lim_{t \to \infty} \phi(t) = 0)$$
 $F(g) = \frac{g}{1-g}$, where $g := \lim_{t \to \infty} \phi(t)$.

Formal limit $t \to \infty$ of

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^tF(\phi(t-s))\dot{\phi}(s)ds=0$$

holds
$$(\lim_{t \to \infty} \phi(t) = 0)$$
 $F(g) = \frac{g}{1-g}$, where $g := \lim_{t \to \infty} \phi(t)$.

Expectation:

A fixed point g of this equation (if exists) fulfils $g \le \phi(t) \le 1$.

Formal limit $t \to \infty$ of

$$\phi(t) + \dot{\phi}(t) + \int_{0}^{t} F(\phi(t-s))\dot{\phi}(s)ds = 0$$

holds
$$(\lim_{t \to \infty} \phi(t) = 0)$$
 $F(g) = \frac{g}{1-g}$, where $g := \lim_{t \to \infty} \phi(t)$.

Expectation:

A fixed point g of this equation (if exists) fulfils $g \leq \phi(t) \leq 1$.

If this is fulfilled, it will be enough so regard F only on the intervall [g,1] and to work with the following kernel-function instead of F:

$$\tilde{F}(x) := \left\{ \begin{array}{ll} F(1), & x > 1 \\ F(x), & g \le x \le 1 \\ F(g), & x < g. \end{array} \right.$$

Formal limit $t \to \infty$ of

$$\phi(t) + \dot{\phi}(t) + \int\limits_0^t F(\phi(t-s))\dot{\phi}(s)ds = 0$$

holds
$$(\lim_{t \to \infty} \phi(t) = 0)$$
 $F(g) = \frac{g}{1-g}$, where $g := \lim_{t \to \infty} \phi(t)$.

Expectation:

A fixed point g of this equation (if exists) fulfils $g \leq \phi(t) \leq 1$.

If this is fulfilled, it will be enough so regard F only on the intervall [g,1] and to work with the following kernel-function instead of F:

$$\tilde{F}(x) := \begin{cases} F(1), & x > 1 \\ F(x), & g \le x \le 1 \\ F(g), & x < g. \end{cases}$$

To preserve differentiability, it will be necessary, to work with an approximation of \tilde{F} .

Lemma

Let N>0, $\varepsilon>0$, $F:\mathbb{R}\to\mathbb{R}$ be Lipschitz continuous and bounded and let $\tilde{F}:\mathbb{R}\to\mathbb{R}$ be continuous and bounded, with $\|F-\tilde{F}\|_{\infty}<\varepsilon$. Let $\phi,\tilde{\phi}:[0,N]\to\mathbb{R}$ be solutions of (1) for F resp. \tilde{F} . Then there exists a constant $\kappa=\kappa(N,\varepsilon,F)>0$:

$$\|\phi - \tilde{\phi}\|_{\infty} \le \kappa \|F - \tilde{F}\|_{\infty}.$$

Lemma

Let N>0, $\varepsilon>0$, $F:\mathbb{R}\to\mathbb{R}$ be Lipschitz continuous and bounded and let $\tilde{F}:\mathbb{R}\to\mathbb{R}$ be continuous and bounded, with $\|F-\tilde{F}\|_{\infty}<\varepsilon$. Let $\phi,\tilde{\phi}:[0,N]\to\mathbb{R}$ be solutions of (1) for F resp. \tilde{F} . Then there exists a constant $\kappa=\kappa(N,\varepsilon,F)>0$:

$$\|\phi - \tilde{\phi}\|_{\infty} \le \kappa \|F - \tilde{F}\|_{\infty}.$$

proof: Let L be a Lipschitz constant of F, $C = \sup_{x \in \mathbb{R}} |F(x)|$.

As a consequence of the proof of the existence theorem for bounded kernel-functions we obtain

$$|\phi(t)| \leq ae^{kN} =: M, \quad |\tilde{\phi}(t)| \leq a_{\varepsilon}e^{k_{\varepsilon}N} =: M_{\varepsilon}, \quad t \in [0, \infty),$$

where

$$a = 2 + NC, k = 2a + 2aC,$$

 $a_{\varepsilon} = 2 + N(C + \varepsilon), k_{\varepsilon} = 2a + 2a(C + \varepsilon).$

Remembering the fixed point equations

$$\phi=T_1\phi,\quad ilde{\phi}=T_2 ilde{\phi},$$
 where $T_1\phi(t)=1+\int\limits_0^tF(\phi(s))-\phi(s)-\phi(t-s)F(\phi(s))ds$ and $T_2 ilde{\phi}(t)=1+\int\limits_0^t ilde{F}(ilde{\phi}(s))- ilde{\phi}(s)- ilde{\phi}(t-s) ilde{F}(ilde{\phi}(s))ds.$

Remembering the fixed point equations

$$\phi=T_1\phi,\quad ilde{\phi}=T_2 ilde{\phi},$$
 where $T_1\phi(t)=1+\int\limits_0^tF(\phi(s))-\phi(s)-\phi(t-s)F(\phi(s))ds$ and $T_2 ilde{\phi}(t)=1+\int\limits_0^t ilde{F}(ilde{\phi}(s))- ilde{\phi}(s)- ilde{\phi}(t-s) ilde{F}(ilde{\phi}(s))ds.$

With this we have

$$\begin{split} |\phi(t) - \tilde{\phi}(t)| &= \left| \int_{0}^{t} \left[F(\phi(s)) - F(\tilde{\phi}(s)) \right] + \left[F(\tilde{\phi}(s)) - \tilde{F}(\tilde{\phi}(s)) \right] \right. \\ &+ \left[\tilde{\phi}(s) - \phi(s) \right] + \tilde{F}(\tilde{\phi}(s)) \left[\tilde{\phi}(t-s) - \phi(t-s) \right] \\ &+ \phi(t-s) \left[\tilde{F}(\tilde{\phi}(s)) - F(\tilde{\phi}(s)) + F(\tilde{\phi}(s)) - F(\phi(s)) \right] ds \Big| \\ &\leq (N + MN) \|F - \tilde{F}\|_{\infty} + (L + 1 + C + \varepsilon + ML) \int_{0}^{t} |\phi(s) - \tilde{\phi}(s)| ds. \end{split}$$

With Gronwall's inequality it follows

$$\|\phi - \tilde{\phi}\|_{\infty} \le \kappa \|F - \tilde{F}\|_{\infty},$$

with
$$\kappa = (N + MN) + (N + MN) (e^{(L+1+C+\varepsilon+ML)N} - 1)$$
.

We can now prove the following theorem:

We can now prove the following theorem:

Theorem

Let $F: \mathbb{R} \to \mathbb{R}$, with

- i) $\exists x_0 < 1 : F(x_0) = \frac{x_0}{1-x_0}$,
- ii) F is differentiable, monotonically increasing and (locally-)Lipschitz continuous on $[x_0, 1]$.

Then there exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ of the problem

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^tF(\phi(t-s))\dot{\phi}(s)ds=0,\quad \phi(0)=1,$$

where ϕ is monotonically decreasing, with $x_0 \leq \phi(t) \leq 1$, $t \in [0, \infty)$.

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} .

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} .

Let $(F_n)_{n\in\mathbb{N}}\subseteq C^0(\mathbb{R},\mathbb{R})$ be a sequence of differentiable, bounded, monotonically increasing functions, with $\|F_n-\tilde{F}\|_{\infty}\stackrel{n\to\infty}{\longrightarrow} 0$.

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} .

Let $(F_n)_{n\in\mathbb{N}}\subseteq C^0(\mathbb{R},\mathbb{R})$ be a sequence of differentiable, bounded, monotonically increasing functions, with $\|F_n-\tilde{F}\|_{\infty}\stackrel{n\to\infty}{\longrightarrow} 0$.

One has for all $n \in \mathbb{N}$: The problem (1) with F_n has a unique solution $\phi_n \in C^1([0,\infty),\mathbb{R})$, where ϕ_n is monotonically decreasing.

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} .

Let $(F_n)_{n\in\mathbb{N}}\subseteq C^0(\mathbb{R},\mathbb{R})$ be a sequence of differentiable, bounded, monotonically increasing functions, with $\|F_n-\tilde{F}\|_{\infty}\stackrel{n\to\infty}{\longrightarrow} 0$.

One has for all $n \in \mathbb{N}$: The problem (1) with F_n has a unique solution $\phi_n \in C^1([0,\infty),\mathbb{R})$, where ϕ_n is monotonically decreasing.

One has for all N > 0: $\|\phi_n - \phi\|_{C^0([0,N])} \le \kappa(N) \|F_n - \tilde{F}\|_{\infty} \stackrel{n \to \infty}{\longrightarrow} 0$, i.e. ϕ is monotonically decreasing.

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} , where ϕ is monotonically decreasing.

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} , where ϕ is monotonically decreasing.

With this and the integro-differential equation one obtains

$$egin{array}{lcl} \dot{\phi}(t) &=& -\phi(t) - \int\limits_0^{\cdot} ilde{F}(\phi(t-s)) \dot{\phi}(s) ds \ &\geq & -(1+ ilde{F}(x_0)) \phi(t) + ilde{F}(x_0) \ &\stackrel{Gronwall}{\Rightarrow} & \phi(t) &\geq & e^{-(1+ ilde{F}(x_0))t} + \int\limits_0^t e^{-(1+ ilde{F}(x_0))(t-s)} ilde{F}(x_0) ds \ &\geq & rac{ ilde{F}(x_0)}{1+ ilde{F}(x_0)} \stackrel{ ilde{F}(x_0)=F(x_0)}{=} x_0. \end{array}$$

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} , where ϕ is monotonically decreasing.

With this and the integro-differential equation one obtains

$$x_0 \leq \phi(t) \leq 1, \quad t \in [0, \infty).$$

$$\tilde{F}(x) := \left\{ egin{array}{ll} F(1), & x > 1 \\ F(x), & x_0 \leq x \leq 1 \\ F(x_0), & x < x_0 \end{array} \right., \quad x \in \mathbb{R}.$$

There exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ for the problem (1) with \tilde{F} , where ϕ is monotonically decreasing.

With this and the integro-differential equation one obtains

$$x_0 \leq \phi(t) \leq 1, \quad t \in [0, \infty).$$

$$\Rightarrow$$
 $\tilde{F}(\phi(t)) = F(\phi(t)), t \in [0, \infty)$, i.e., ϕ is a solution of (1) with F .

1.
$$F(x) = sin(x)$$
, monotone on $[0, 1]$,

- 1. F(x) = sin(x), monotone on [0, 1],
- 2. $F(x) = \sqrt{x}$,

- 1. F(x) = sin(x), monotone on [0, 1],
- 2. $F(x) = \sqrt{x}$,
- 3. Polynomial functions with negative coefficients, e.g. $F(x) = -x^2 + 2x$

Asymptotic behaviour

Asymptotic behaviour

Theorem

Let $F: \mathbb{R} \to \mathbb{R}$, with

- i) $\exists x_0 < 1 : F(x_0) = \frac{x_0}{1-x_0}$,
- ii) F is differentiable, monotonically increasing and (locally-)Lipschitz continuous on $[x_0, 1]$.

Then the solution ϕ of the problem (1) converges to the maximum intercept point of F with G, where $G(x) = \frac{x}{1-x}$, $x \in (-\infty, 1)$.

proof:
$$\exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g$$

$$\text{proof:} \quad \exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \quad \Rightarrow \quad \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))|$$

proof:
$$\exists g \in \mathbb{R} : \phi(t) \xrightarrow{t \to \infty} g \Rightarrow \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))|$$

One has for $0 < t_1 < t$

$$\left| \int_0^t F(\phi(t-s))\dot{\phi}(s)ds - F(g)(g-1) \right|$$

$$\leq \left| \int_0^{t_1} F(\phi(t-s))\dot{\phi}(s)ds - F(g)(g-1) \right| + \left| \int_{t_1}^t F(\phi(t-s))\dot{\phi}(s)ds \right|$$

$$\equiv I_1 + I_2$$

$$\begin{array}{ll} \mathsf{proof:} & \exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \quad \Rightarrow \quad \exists C := \sup_{t \in [0, \infty)} |F(\phi(t))| \\ \mathsf{One has for } 0 < t_1 < t \\ & \left| \int_0^t F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| \\ \leq & \left| \int_0^{t_1} F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| + \left| \int_{t_1}^t F(\phi(t-s)) \dot{\phi}(s) ds \right| \\ \equiv & l_1 + l_2 \end{array}$$

We have for the first addend

$$I_1 \stackrel{t \to \infty}{\longrightarrow} \left| \int_0^{t_1} F(g) \dot{\phi}(s) ds - F(g)(g-1) \right| = |F(g)||\phi(t_1) - g|$$

$$\begin{array}{ll} \mathsf{proof:} & \exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \quad \Rightarrow \quad \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))| \\ \mathsf{One has for } 0 < t_1 < t \\ & \left| \int_0^t F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| \\ \leq & \left| \int_0^{t_1} F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| + \left| \int_{t_1}^t F(\phi(t-s)) \dot{\phi}(s) ds \right| \\ \equiv & l_1 + l_2 \end{array}$$

We have for the first addend

$$I_1 \stackrel{t \to \infty}{\longrightarrow} \left| \int_0^{t_1} F(g) \dot{\phi}(s) ds - F(g)(g-1) \right| = |F(g)||\phi(t_1) - g|$$

and for the second

$$I_{2} \leq \int_{t_{1}}^{t} |F(\phi(t-s))| |\dot{\phi}(s)| ds \stackrel{\dot{\phi} \leq 0}{\leq} C \int_{t_{1}}^{t} -\dot{\phi}(s) ds$$

$$\leq -C (|\phi(t)-\mathbf{g}| - |\phi(t_{1})-\mathbf{g}|) \stackrel{t \to \infty}{\longrightarrow} C |\phi(t_{1})-\mathbf{g}|.$$

$$\begin{array}{ll} \mathsf{proof:} & \exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \quad \Rightarrow \quad \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))| \\ \mathsf{One} \ \mathsf{has} \ \mathsf{for} \ 0 < t_1 < t \\ & \left| \int_0^t F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| \\ \leq & \left| \int_0^{t_1} F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| + \left| \int_{t_1}^t F(\phi(t-s)) \dot{\phi}(s) ds \right| \\ \equiv & I_1 + I_2 \end{array}$$

We choose t_1 large enough, that we have for arbitrary $\varepsilon>0$ $\lim_{t\to\infty}I_1+I_2<\varepsilon.$

$$\begin{aligned} & \text{proof:} \quad \exists g \in \mathbb{R} : \phi(t) \overset{t \to \infty}{\longrightarrow} g \quad \Rightarrow \quad \exists C := \sup_{t \in [0, \infty)} |F(\phi(t))| \\ & \text{One has for } 0 < t_1 < t \\ & \left| \int_0^t F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| \\ & \leq \left| \int_0^{t_1} F(\phi(t-s)) \dot{\phi}(s) ds - F(g)(g-1) \right| + \left| \int_{t_1}^t F(\phi(t-s)) \dot{\phi}(s) ds \right| \\ & \equiv \left| I_1 + I_2 \right| \end{aligned}$$

We choose t_1 large enough, that we have for arbitrary $\varepsilon>0$

$$\lim_{t\to\infty}I_1+I_2<\varepsilon.$$

$$\Rightarrow \lim_{t \to \infty} \int_0^t F(\phi(t-s))\dot{\phi}(s)ds = F(g)(g-1).$$

proof:
$$\exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \Rightarrow \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))|$$

One has (as seen above)
$$\lim_{t \to \infty} \int_0^t F(\phi(t-s)) \dot{\phi}(s) ds = F(g)(g-1).$$

proof:
$$\exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \Rightarrow \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))|$$

One has (as seen above)

$$\lim_{t\to\infty}\int_0^t F(\phi(t-s))\dot{\phi}(s)ds=F(g)(g-1).$$

Since
$$\phi \in C^1([0,\infty),\mathbb{R})$$
 with $\lim_{t\to\infty}\phi(t)=g$, there exists a sequence $(t_n)_{n\in\mathbb{N}}\subseteq [0,\infty): t_n\stackrel{n\to\infty}{\longrightarrow}\infty, \phi(t_n)\stackrel{n\to\infty}{\longrightarrow}g, \dot{\phi}(t_n)\stackrel{n\to\infty}{\longrightarrow}0.$

proof:
$$\exists g \in \mathbb{R} : \phi(t) \stackrel{t \to \infty}{\longrightarrow} g \Rightarrow \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))|$$

One has (as seen above)

$$\lim_{t\to\infty}\int_0^t F(\phi(t-s))\dot{\phi}(s)ds=F(g)(g-1).$$

Since $\phi \in C^1([0,\infty),\mathbb{R})$ with $\lim_{t\to\infty} \phi(t) = g$, there exists a sequence $(t_n)_{n\in\mathbb{N}} \subseteq [0,\infty): t_n \stackrel{n\to\infty}{\longrightarrow} \infty, \phi(t_n) \stackrel{n\to\infty}{\longrightarrow} g, \dot{\phi}(t_n) \stackrel{n\to\infty}{\longrightarrow} 0.$

$$\begin{array}{ll} \stackrel{Integro-DE}{\Rightarrow} & \int_0^{t_n} F(\phi(t_n-s))\dot{\phi}(s)ds = -\phi(t_n) - \dot{\phi}(t_n) & \stackrel{n\to\infty}{\longrightarrow} & -g \\ \\ \Rightarrow & F(g) = \frac{g}{1-g} = G(g) \end{array}$$

proof:
$$\exists g \in \mathbb{R} : \phi(t) \xrightarrow{t \to \infty} g \Rightarrow \exists C := \sup_{t \in [0,\infty)} |F(\phi(t))|$$

One has (as seen above)

$$\lim_{t\to\infty}\int_0^t F(\phi(t-s))\dot{\phi}(s)ds=F(g)(g-1).$$

Since $\phi \in C^1([0,\infty),\mathbb{R})$ with $\lim_{t\to\infty} \phi(t) = g$, there exists a sequence $(t_n)_{n\in\mathbb{N}} \subseteq [0,\infty): t_n \stackrel{n\to\infty}{\longrightarrow} \infty, \phi(t_n) \stackrel{n\to\infty}{\longrightarrow} g, \dot{\phi}(t_n) \stackrel{n\to\infty}{\longrightarrow} 0.$

$$\stackrel{Integro-DE}{\Rightarrow} \int_{0}^{t_{n}} F(\phi(t_{n}-s))\dot{\phi}(s)ds = -\phi(t_{n}) - \dot{\phi}(t_{n}) \xrightarrow{n \to \infty} -g$$

$$\Rightarrow F(g) = \frac{g}{1-g} = G(g)$$

Since for all $x_0 < 1$, with $F(x_0) = G(x_0)$: $\phi(t) \ge x_0$, $t \in [0, \infty)$, ϕ converges to the maximum intercept point of F and G.

We define

$$F(x) := \left\{ \begin{array}{ll} \frac{x}{1-x} - 1, & x < \frac{1}{2} \\ 0, & x \ge \frac{1}{2} \end{array} \right..$$

F is bounded and monotonically increasing, with F(x) < G(x) for all $x \in \mathbb{R}$.

Then there exists a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$ of (1) with F, where ϕ monotonically decreasing, with $\lim_{t\to\infty}\phi(t)\to -\infty$, i.e. there are divergent solutions.

Introduction
Well-posedness
Asymptotic behaviour
Time-dependent kernel-functions
Open questions

We now aim to prove polynomial convergency of solutions. We start with the following lemma (without proof):

We now aim to prove polynomial convergency of solutions. We start with the following lemma (without proof):

Lemma

Let $F:[0,1]\to\mathbb{R}$ be continuously differentiable with the following conditions

i)
$$F(x) < \frac{x}{1-x}, x \neq 0$$
,

ii)
$$F(0) = 0$$
,

iii)
$$F'(0) < 1$$
.

Then one has a $\varepsilon \in (0,1)$, s.t. for all $x \in [0,1)$

$$F(x) \le \frac{x}{1-x} - \varepsilon x =: H(x).$$

H is an absolutely monotone function.

Theorem

Let $F:[0,1] \to \mathbb{R}$ be continuously differentiable and monotonically increasing with the following conditions

i)
$$F(x) < \frac{x}{1-x}, x \neq 0$$
,

ii)
$$F(0) = 0$$
,

iii)
$$F'(0) < 1$$
.

Let ϕ be the solution of (1) with kernel-function F (convergent to 0). Then there exists the improper integrals for all $n \in \mathbb{N}_0$

$$\int_0^\infty t^n \phi(t) dt \quad und \quad \int_0^\infty t^n F(\phi(t)) dt.$$

proof: With previous lemma there exists $\varepsilon_0 \in (0,1)$, s.t. for all $x \in [0,1)$

$$F(x) \leq \frac{x}{1-x} - \varepsilon_0 x =: H(x).$$

proof: With previous lemma there exists $arepsilon_0 \in (0,1)$, s.t. for all $x \in [0,1)$

$$F(x) \le \frac{x}{1-x} - \varepsilon_0 x =: H(x).$$

H is absolutely monotone, with H'(0) < 1. Then there exists $\varepsilon \in (0,1)$ and $x_0 > 0$, s.t. for all $n \in \mathbb{N}_0$, $x > x_0$

$$\int_{x_0}^x t^n F(\phi(t)) dt \leq \int_{x_0}^x t^n H(\phi(t)) dt \overset{\mathsf{G\"{o}}\mathsf{tze\&Sj\"{o}}\mathsf{gren}}{\leq} (1-\varepsilon) \int_{x_0}^x t^n \phi(t) dt.$$

$$\int_{x_0}^x t^n F(\phi(t)) dt \le (1 - \varepsilon) \int_{x_0}^x t^n \phi(t) dt.$$
 (5)

$$\int_{x_0}^x t^n F(\phi(t)) dt \le (1 - \varepsilon) \int_{x_0}^x t^n \phi(t) dt.$$
 (5)

Integrating the integro-differential equation from x_0 to x, we obtain

$$\int_{x_0}^x \phi(t)dt + \int_{x_0}^x \dot{\phi}(t)dt + \int_{x_0}^x \frac{d}{dt} \left(\int_0^t F(\phi(s))\phi(t-s) - F(\phi(s))ds \right)dt = 0.$$

$$\int_{x_0}^x t^n F(\phi(t)) dt \le (1 - \varepsilon) \int_{x_0}^x t^n \phi(t) dt.$$
 (5)

Integrating the integro-differential equation from x_0 to x, we obtain

$$\int_{x_0}^x \phi(t)dt + \int_{x_0}^x \dot{\phi}(t)dt + \int_{x_0}^x \frac{d}{dt} \left(\int_0^t F(\phi(s))\phi(t-s) - F(\phi(s))ds \right) dt = 0.$$

Since for all $t \in [0, \infty)$ $F(\phi(t)) \ge 0$ and $\phi(t) \ge 0$, we conclude

$$\int_{x_0}^{x} \phi(t)dt \leq \phi(x_0) - \phi(x) + \int_{x_0}^{x} F(\phi(t))dt + \int_{0}^{x_0} F(\phi(s))\phi(x_0 - s)ds \\
\leq \phi(x_0) + (1 - \varepsilon) \int_{x_0}^{x} \phi(t)dt + \int_{0}^{x_0} F(\phi(s))\phi(x_0 - s)ds.$$

$$\int_{x_0}^x t^n F(\phi(t)) dt \le (1 - \varepsilon) \int_{x_0}^x t^n \phi(t) dt.$$
 (5)

Integrating the integro-differential equation from x_0 to x, we obtain

$$\int_{x_0}^x \phi(t)dt + \int_{x_0}^x \dot{\phi}(t)dt + \int_{x_0}^x \frac{d}{dt} \left(\int_0^t F(\phi(s))\phi(t-s) - F(\phi(s))ds \right) dt = 0.$$

Since for all $t \in [0, \infty)$ $F(\phi(t)) \ge 0$ and $\phi(t) \ge 0$, we conclude

$$\int_{x_0}^{x} \phi(t)dt \leq \phi(x_0) - \phi(x) + \int_{x_0}^{x} F(\phi(t))dt + \int_{0}^{x_0} F(\phi(s))\phi(x_0 - s)ds$$

$$\leq \phi(x_0) + (1 - \varepsilon) \int_{x_0}^{x} \phi(t)dt + \int_{0}^{x_0} F(\phi(s))\phi(x_0 - s)ds.$$

$$\Rightarrow \quad \int_{x_0}^x \phi(t) dt \leq \frac{1}{\varepsilon} \phi(x_0) + \frac{1}{\varepsilon} \int_0^{x_0} F(\phi(x_0 - s)) \phi(s) ds \overset{\text{indep. of } x}{<} \infty.$$

proof: We conclude

$$\int_0^\infty \phi(t)dt < \infty \quad \text{and} \quad \int_0^\infty F(\phi(t))dt < \infty.$$

Multiplying the integro-DE with t^n and integrating from x_0 to x we obtain by a similar calculation

$$\int_{x_0}^{x} t^n \phi(t) dt \le C(x_0) + n \int_{x_0}^{x} t^{n-1} \phi(t) dt + \int_{x_0}^{x} t^n F(\phi(t)) dt + n \int_{x_0}^{x} \int_{0}^{t} t^{n-1} F(\phi(s)) \phi(t-s) ds dt,$$

where $C(x_0)$ only depends on integrals with integration limits 0 and x_0 .

Multiplying the integro-DE with t^n and integrating from x_0 to x we obtain by a similar calculation

$$\int_{x_0}^{x} t^n \phi(t) dt \le C(x_0) + n \int_{x_0}^{x} t^{n-1} \phi(t) dt + \int_{x_0}^{x} t^n F(\phi(t)) dt + n \int_{x_0}^{x} \int_{0}^{t} t^{n-1} F(\phi(s)) \phi(t-s) ds dt,$$

where $C(x_0)$ only depends on integrals with integration limits 0 and x_0 . Following estimate was presented in the work of Götze&Sjögren

$$n \int_{x_0}^{x} \int_{0}^{t} t^{n-1} F(\phi(s)) \phi(t-s) ds dt$$

$$\leq n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{0}^{x} t^{n-1-i} \phi(t) dt \int_{0}^{x} t^{i} F(\phi(t)) dt.$$

proof: We conclude

$$\int_{x_{0}}^{x} t^{n} \phi(t) dt \leq C(x_{0}) + n \int_{x_{0}}^{x} t^{n-1} \phi(t) dt + (1 - \varepsilon) \int_{x_{0}}^{x} t^{n} \phi(t) dt
+ n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{x_{0}}^{x} t^{n-1-i} \phi(t) dt \int_{x_{0}}^{x} t^{i} F(\phi(t)) dt
- n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{0}^{x_{0}} t^{n-1-i} \phi(t) dt \int_{x_{0}}^{x} t^{i} F(\phi(t)) dt
- n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{x_{0}}^{x} t^{n-1-i} \phi(t) dt \int_{0}^{x_{0}} t^{i} F(\phi(t)) dt
+ n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{0}^{x_{0}} t^{n-1-i} \phi(t) dt \int_{0}^{x_{0}} t^{i} F(\phi(t)) dt.$$

proof: We conclude

$$\int_{x_{0}}^{x} t^{n} \phi(t) dt \leq C(x_{0}) + n \int_{x_{0}}^{x} t^{n-1} \phi(t) dt + (1 - \varepsilon) \int_{x_{0}}^{x} t^{n} \phi(t) dt
+ n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{x_{0}}^{x} t^{n-1-i} \phi(t) dt \int_{x_{0}}^{x} t^{i} F(\phi(t)) dt
- n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{0}^{x_{0}} t^{n-1-i} \phi(t) dt \int_{x_{0}}^{x} t^{i} F(\phi(t)) dt
- n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{x_{0}}^{x} t^{n-1-i} \phi(t) dt \int_{0}^{x_{0}} t^{i} F(\phi(t)) dt
+ n \sum_{i=0}^{n-1} {n-1 \choose i} \int_{0}^{x_{0}} t^{n-1-i} \phi(t) dt \int_{0}^{x_{0}} t^{i} F(\phi(t)) dt.$$

With a proof by induction, we obtain

$$\int_{\infty}^{x} t^{n} \phi(t) dt \stackrel{\text{indep. of } x}{<} \infty \quad \text{and} \quad \int_{\infty}^{x} t^{n} F(\phi(t)) dt \stackrel{\text{indep. of } x}{<} \infty.$$

$$\int_{x_0}^{x} t^n F(\phi(t)) dt \stackrel{\text{indep. of } x}{<} \infty$$

proof: We conclude the existence of the following improper integrals

$$\int_0^\infty t^n \phi(t) dt \quad \text{and} \quad \int_0^\infty t^n F(\phi(t)) dt$$

for all $n \in \mathbb{N}_0$.

proof: We conclude the existence of the following improper integrals

$$\int_0^\infty t^n \phi(t) dt \quad \text{and} \quad \int_0^\infty t^n F(\phi(t)) dt$$

for all $n \in \mathbb{N}_0$.

Corollary (proof Götze&Sjögren)

Let $F:[0,1]\to\mathbb{R}$ be continuously differentiable and monotonically increasing with the following conditions

- i) $F(x) < \frac{x}{1-x}, x \neq 0$,
- ii) F(0) = 0,
- iii) F'(0) < 1.

Let ϕ be the solution of (1) with kernel-function F (convergent to 0). Then one has for all $n \in \mathbb{N}_0$

$$\lim_{t\to\infty}t^n\phi(t)=0.$$

Introduction
Well-posedness
Asymptotic behaviour
Time-dependent kernel-functions
Open questions

For the last result, the restriction F'(0) < 1 was needed. The following theorem is an input for the discussion of asymptotic behaviour in case of F'(0) = 1:

For the last result, the restriction F'(0) < 1 was needed. The following theorem is an input for the discussion of asymptotic behaviour in case of F'(0) = 1:

Theorem

Let $F:[0,1] \to \mathbb{R}$ be differentiable and monotonically increasing, with

$$\exists c \in (0,1] \ \forall x \in [0,1] : 0 \le F(x) \le c \cdot x.$$

Then one has for the solution ϕ of (1) with F (convergent to 0)

$$\phi(t) \le c^{-\frac{1}{2}} \cdot t^{-\frac{1}{2}}, \quad t \in [0, \infty).$$

proof: One has

$$\frac{d}{dt}\int_0^t \phi(t-s)\phi(s)ds = \phi(t) + \int_0^t \dot{\phi}(t-s)\phi(s)ds.$$
 (6)

proof: One has

$$\frac{d}{dt}\int_0^t \phi(t-s)\phi(s)ds = \phi(t) + \int_0^t \dot{\phi}(t-s)\phi(s)ds.$$
 (6)

By variation of constants, we obtain

$$\begin{split} \phi(t) &= \mathrm{e}^{-t} - \mathrm{e}^{-t} \int_0^t \mathrm{e}^s \int_0^s F(\phi(s-\tau)) \dot{\phi}(\tau) d\tau ds \\ &\leq \mathrm{e}^{-t} - \mathrm{e}^{-t} \int_0^t \mathrm{e}^s \int_0^s c \phi(s-\tau) \dot{\phi}(\tau) d\tau ds \\ &\stackrel{(6)}{=} \mathrm{e}^{-t} - \mathrm{e}^{-t} \int_0^t \mathrm{e}^s \left(\frac{d}{ds} c \int_0^s \phi(s-\tau) \phi(\tau) d\tau \right. \\ &- c \int_0^t \phi(t-s) \phi(s) ds + \mathrm{e}^{-t} \int_0^t \mathrm{e}^s \phi(s) ds. \end{split}$$

We conclude

$$e^t\phi(t)+e^t\cdot c\int_0^t\phi(t-s)\phi(s)ds\leq 1+\int_0^te^s\phi(s)+e^s\cdot c\int_0^s\phi(s-\tau)\phi(\tau)d\tau ds.$$

We conclude

$$e^t\phi(t)+e^t\cdot c\int_0^t\phi(t-s)\phi(s)ds\leq 1+\int_0^te^s\phi(s)+e^s\cdot c\int_0^s\phi(s-\tau)\phi(\tau)d\tau ds.$$

With Gronwall's inequality, we have

$$e^t \cdot c \int_0^t \phi(t-s)\phi(s)ds \leq e^t$$

We conclude

$$e^t\phi(t)+e^t\cdot c\int_0^t\phi(t-s)\phi(s)ds\leq 1+\int_0^te^s\phi(s)+e^s\cdot c\int_0^s\phi(s-\tau)\phi(\tau)d\tau ds.$$

With Gronwall's inequality, we have

$$e^t \cdot c \int_0^t \phi(t-s)\phi(s)ds \leq e^t$$

$$\stackrel{\phi \text{ monotone}}{\Rightarrow} e^t \cdot c \cdot \phi^2(t) \cdot t \leq e^t$$

We conclude

$$e^t\phi(t) + e^t \cdot c \int_0^t \phi(t-s)\phi(s)ds \leq 1 + \int_0^t e^s\phi(s) + e^s \cdot c \int_0^s \phi(s-\tau)\phi(\tau)d\tau ds.$$

With Gronwall's inequality, we have

$$e^t \cdot c \int_0^t \phi(t-s)\phi(s)ds \leq e^t$$

$$\stackrel{\phi \text{ monotone}}{\Rightarrow} e^t \cdot c \cdot \phi^2(t) \cdot t \leq e^t$$

$$\Rightarrow \quad \phi(t) \leq c^{-\frac{1}{2}} \cdot t^{-\frac{1}{2}}.$$

Previous results were proved only in case of $\lim_{t\to\infty} \phi(t) = 0$. By using the following transformations, we are able to generalize the results in case of limits different from 0:

Previous results were proved only in case of $\lim_{t\to\infty} \phi(t) = 0$. By using the following transformations, we are able to generalize the results in case of limits different from 0:

We define

$$ilde{F}(x):=\left[F((1-g)x+g)-F(g)
ight](1-g) \quad ext{und} \quad ilde{\phi}(t):=rac{\phi(t)-g}{1-g},$$

Previous results were proved only in case of $\lim_{t\to\infty} \phi(t) = 0$. By using the following transformations, we are able to generalize the results in case of limits different from 0:

We define

$$\tilde{F}(x) := [F((1-g)x+g)-F(g)](1-g) \quad und \quad \tilde{\phi}(t) := \frac{\phi(t)-g}{1-g},$$

one has

$$ilde{\phi}(t)+(1-g)\dot{ ilde{\phi}}(t)+\int_0^t ilde{F}(ilde{\phi}(s))\dot{ ilde{\phi}}(t-s)ds=0, \quad ilde{\phi}(0)=1.$$

Previous results were proved only in case of $\lim_{t\to\infty} \phi(t) = 0$. By using the following transformations, we are able to generalize the results in case of limits different from 0:

We define

$$\tilde{F}(x) := [F((1-g)x+g)-F(g)](1-g) \quad und \quad \tilde{\phi}(t) := \frac{\phi(t)-g}{1-g},$$

one has

$$\tilde{\phi}(t) + (1-g)\dot{\tilde{\phi}}(t) + \int_0^t \tilde{F}(\tilde{\phi}(s))\dot{\tilde{\phi}}(t-s)ds = 0, \quad \tilde{\phi}(0) = 1.$$

Further, we define

$$\tilde{\psi}(t) := \tilde{\phi}((1-g)t),$$

Previous results were proved only in case of $\lim_{t\to\infty} \phi(t) = 0$. By using the following transformations, we are able to generalize the results in case of limits different from 0:

We define

$$\tilde{F}(x) := [F((1-g)x+g)-F(g)](1-g) \quad und \quad \tilde{\phi}(t) := \frac{\phi(t)-g}{1-g},$$

one has

$$\tilde{\phi}(t) + (1-g)\dot{\tilde{\phi}}(t) + \int_0^t \tilde{F}(\tilde{\phi}(s))\dot{\tilde{\phi}}(t-s)ds = 0, \quad \tilde{\phi}(0) = 1.$$

Further, we define

$$\tilde{\psi}(t) := \tilde{\phi}((1-g)t),$$

thus, we have

$$ilde{\psi}(t)+\dot{ ilde{\psi}}(t)+\int_0^t ilde{F}(ilde{\psi}(s))\dot{ ilde{\psi}}(t-s)ds=0,\quad ilde{\psi}(0)=1,$$

Previous results were proved only in case of $\lim_{t\to\infty} \phi(t) = 0$. By using the following transformations, we are able to generalize the results in case of limits different from 0:

We define

$$\tilde{F}(x) := [F((1-g)x+g)-F(g)](1-g) \quad und \quad \tilde{\phi}(t) := \frac{\phi(t)-g}{1-g},$$

one has

$$ilde{\phi}(t)+(1-g)\dot{ ilde{\phi}}(t)+\int_0^t ilde{F}(ilde{\phi}(s))\dot{ ilde{\phi}}(t-s)ds=0, \quad ilde{\phi}(0)=1.$$

Further, we define

$$\tilde{\psi}(t) := \tilde{\phi}((1-g)t),$$

thus, we have

$$ilde{\psi}(t) + \dot{\tilde{\psi}}(t) + \int_0^t \tilde{F}(\tilde{\psi}(s))\dot{\tilde{\psi}}(t-s)ds = 0, \quad \tilde{\psi}(0) = 1,$$

where $\tilde{\psi}(t) \stackrel{t \to \infty}{\longrightarrow} 0 \Leftrightarrow \phi(t) \stackrel{t \to \infty}{\longrightarrow} g$.

Time-dependent kernel-functions

Time-dependent kernel-functions

We remember the physically relevant problem

$$\phi(t) + \dot{\phi}(t) + \int_0^t \frac{f(\phi(t-s))}{1 + \gamma^2(t-s)^2} \dot{\phi}(s) ds = 0, \tag{7}$$

Time-dependent kernel-functions

We remember the physically relevant problem

$$\phi(t) + \dot{\phi}(t) + \int_0^t \frac{f(\phi(t-s))}{1 + \gamma^2(t-s)^2} \dot{\phi}(s) ds = 0, \tag{7}$$

Thus, it is useful, to discuss kernel-functions of the type

$$F(x,s) = f(x) \cdot g(s), \quad f: \mathbb{R} \to \mathbb{R}, \quad g: [0,\infty) \to \mathbb{R}$$

The problem

$$\phi(t)+\dot{\phi}(t)+\int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds=0,\quad \phi(0)=1$$

is equivalent to the following fixed point problem

$$\phi(t) = 1 + \int_0^t f(\phi(s))g(s) - \phi(s) - f(\phi(s))g(s)\phi(t-s)ds.$$

The problem

$$\phi(t)+\dot{\phi}(t)+\int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds=0,\quad \phi(0)=1$$

is equivalent to the following fixed point problem

$$\phi(t)=1+\int_0^t f(\phi(s))g(s)-\phi(s)-f(\phi(s))g(s)\phi(t-s)ds.$$

One can treat this problem by using Banach fixed point theorem analogously to the previous chapter.

Hence, we conclude the following existence theorem for bounded kernel-functions:

Theorem

Let $f: \mathbb{R} \to \mathbb{R}$, $x \mapsto f(x)$ be bounded and locally Lipschitz continuous and $g: [0, \infty) \to \mathbb{R}$, $s \mapsto g(s)$ continuous. Then the problem

$$\phi(t)+\dot{\phi}(t)+\int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds=0,\quad \phi(0)=1$$

has a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$.

$$\phi(t) + \dot{\phi}(t) + \int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds = 0$$
 (8)

$$\phi(t) + \dot{\phi}(t) + \int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds = 0$$
 (8)

1. Differentiating (8) comes to

$$[1 + f(1)g(0)]\dot{\phi}(t) + \ddot{\phi}(t) + \int_{0}^{t} f'(\phi(t-s))g(t-s)\dot{\phi}(t-s)\dot{\phi}(s) + f(\phi(t-s))g'(t-s)\dot{\phi}(s) = 0$$

$$\phi(t) + \dot{\phi}(t) + \int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds = 0$$
 (8)

1. Differentiating (8) comes to

$$[1 + f(1)g(0)]\dot{\phi}(t) + \ddot{\phi}(t) + \int_{0}^{t} f'(\phi(t-s))g(t-s)\dot{\phi}(t-s)\dot{\phi}(s) + f(\phi(t-s))g'(t-s)\dot{\phi}(s) = 0$$

 ϕ is monotonically decreasing if one of the following cases is valid

$$f' \ge 0, g \ge 0$$
 $f \ge 0, g' \le 0$
or and or $f' \le 0, g \le 0$ $f \le 0, g' \ge 0$

$$\phi(t) + \dot{\phi}(t) + \int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds = 0$$
 (9)

1. ϕ is monotonically decreasing if one of the following cases is valid

$$f' \ge 0, g \ge 0$$
 $f \ge 0, g' \le 0$ or and or $f' \le 0, g \le 0$ $f \le 0, g' \ge 0$

$$\phi(t) + \dot{\phi}(t) + \int_0^t f(\phi(t-s))g(t-s)\dot{\phi}(s)ds = 0$$
 (9)

1. ϕ is monotonically decreasing if one of the following cases is valid

$$f' \geq 0, g \geq 0 \qquad \qquad f \geq 0, g' \leq 0$$
 or and or
$$f' \leq 0, g \leq 0 \qquad \qquad f \leq 0, g' \geq 0$$

2. Formal limit $t \to \infty$ of (9) comes to

$$f(x_0) \cdot \lim_{t \to \infty} g(t) = \frac{x_0}{1 - x_0}$$
, with $\lim_{t \to \infty} \phi(t) = x_0$.

A maximum fixed point of this equation (if ex.) is a candidate for a limit of ϕ .

Theorem (without proof)

Let
$$g:[0,\infty) \to \mathbb{R}$$
, s.t. the limit $\bar{g}:=\lim_{t \to \infty} g(t)$ exists.

Theorem (without proof)

Let $g:[0,\infty)\to\mathbb{R}$, s.t. the limit $\bar{g}:=\lim_{t\to\infty}g(t)$ exists. Let $f:\mathbb{R}\to\mathbb{R}$ such that a $x_0<1$ exists, with

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

Theorem (without proof)

Let $g:[0,\infty) \to \mathbb{R}$, s.t. the limit $\bar{g}:=\lim_{t \to \infty} g(t)$ exists.

Let $f: \mathbb{R} \to \mathbb{R}$ such that a $x_0 < 1$ exists, with

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

In addition to that one has the following conditions

i) $f|_{[x_0,1]}$ and g are differentiable, with

$$f' \ge 0$$
, $g \ge 0$ $f \ge 0$, $g' \le 0$ or and or $f' \le 0$, $g \le 0$ $f \le 0$, $g' \ge 0$

Theorem (without proof)

Let $g:[0,\infty) \to \mathbb{R}$, s.t. the limit $\bar{g}:=\lim_{t \to \infty} g(t)$ exists.

Let $f: \mathbb{R} \to \mathbb{R}$ such that a $x_0 < 1$ exists, with

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

In addition to that one has the following conditions

i) $f|_{[x_0,1]}$ and g are differentiable, with

$$f' \geq 0, \ g \geq 0 \\ or \qquad and \qquad or \\ f' \leq 0, \ g \leq 0 \qquad \qquad f \leq 0, \ g' \geq 0$$

ii) $f|_{[x_0,1]}$ is (locally-)Lipschitz continuous

Theorem (without proof)

Let $g:[0,\infty)\to\mathbb{R}$, s.t. the limit $\bar{g}:=\lim_{t\to\infty}g(t)$ exists.

Let $f: \mathbb{R} \to \mathbb{R}$ such that a $x_0 < 1$ exists, with

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

In addition to that one has the following conditions

i) $f|_{[x_0,1]}$ and g are differentiable, with

$$f' \ge 0, g \ge 0 \qquad \qquad f \ge 0, g' \le 0$$
 or and or
$$f' \le 0, g \le 0 \qquad \qquad f \le 0, g' \ge 0$$

ii) $f|_{[x_0,1]}$ is (locally-)Lipschitz continuous

Then the problem (9) with f and g has a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$, where ϕ is monotonically decreasing, with $x_0 \leq \phi(t) \leq 1$ for all $t \in [0,\infty)$.

Theorem (without proof)

i) Under the conditions of the previous theorem, the solution ϕ converges to the maximum fixed point $x_0 < 1$ of the equation

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

Theorem (without proof)

i) Under the conditions of the previous theorem, the solution ϕ converges to the maximum fixed point $x_0 < 1$ of the equation

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

ii) If one has additionally

$$f'(x_0)\cdot \bar{g}<\frac{1}{(1-x_0)^2},$$

then one has for all $n \in \mathbb{N}$ at

$$\lim_{t\to\infty}t^n[\phi(t)-x_0]=0.$$

Theorem (without proof)

i) Under the conditions of the previous theorem, the solution ϕ converges to the maximum fixed point $x_0 < 1$ of the equation

$$f(x_0)\cdot \bar{g}=\frac{x_0}{1-x_0}.$$

ii) If one has additionally

$$f'(x_0)\cdot \bar{g}<\frac{1}{(1-x_0)^2},$$

then one has for all $n \in \mathbb{N}$ at

$$\lim_{t\to\infty}t^n[\phi(t)-x_0]=0.$$

iii) If instead of (ii) one has

$$f(x)g(s) \leq \frac{c}{(1-x_0)^2} + \frac{x_0}{1-x_0} - c\frac{x_0}{(1-x_0)^2},$$
 with $c \in (0,1]$ f.a. $(x,s) \in [x_0,1] \times [0,\infty)$,

then one has

$$|\phi(t)-x_0| \leq (1-x_0)^{\frac{3}{2}}c^{-\frac{1}{2}}t^{-\frac{1}{2}}, \quad t \in [0,\infty).$$

Introduction
Well-posedness
Asymptotic behaviour
Time-dependent kernel-functions
Open questions

Applying these results to the physical example, we arrive at the following result:

Applying these results to the physical example, we arrive at the following result:

Corollary

Let $f:[0,1] \to \mathbb{R}$ be non-negative, differentiable, monotonically increasing and (locally-)Lipschitz continuous, then the problem

$$\phi(t) + \dot{\phi}(t) + \int_0^t \frac{f(\phi(t-s))}{1+\gamma^2(t-s)^2} \dot{\phi}(s) ds = 0, \quad \phi(0) = 1$$

has a unique solution $\phi \in C^1([0,\infty),\mathbb{R})$, where ϕ is monotonically decreasing, with

$$\lim_{t\to\infty}t^n\phi(t)=0.$$

To treat the second physical example

$$\phi(t)+\dot{\phi}(t)+\int_0^t h(t)h(t-s)f(\phi(t-s))\dot{\phi}(s)ds=0,\quad \phi(0)=1,$$

h' needs to be locally bounded. This is obvious when one regards the following equivalent fixed point problem

$$\phi(t) = 1 + \int_0^t h^2(s)f(\phi(s)) - \phi(s) - h(t)h(s)f(\phi(s))\phi(t-s)ds$$
$$+ \int_0^t \int_0^s h'(s)h(r)f(\phi(r))\phi(s-r)drds.$$

The limit of the solution ist then given by the maximal fixed point of the following equation $f(x_0)\bar{h}^2=\frac{x_0}{1-x_0},$

where
$$\bar{h} := \lim_{t \to \infty} h(t)$$
.

▶ Not just polynomial convergency, but exponential convergency?

- ▶ Not just polynomial convergency, but exponential convergency?
- ▶ Improvement of the asymptotic-results in case of $F'(g) = \frac{1}{(1-g)^2}$

- Not just polynomial convergency, but exponential convergency?
- ▶ Improvement of the asymptotic-results in case of $F'(g) = \frac{1}{(1-g)^2}$
- Well-Posedness and asymptotic behaviour in case of unbounded, non-monotone kernel-functions. A background is the following example in physics

$$\phi(t)+\dot{\phi}(t)+\int\limits_0^trac{f(\phi(t-s))}{1+\gamma^2 ext{sin}^2(\omega(t-s))}\dot{\phi}(s)ds=0,\quad \phi(0)=1$$

▶ Treatment of ordinary integro-differential equations with complex-valued kernel-functions. A background is the following example of a coupled system in physics

$$\begin{split} \dot{\phi_1}(t) + \omega_1 \phi_1(t) + \omega_1 \int_0^t \frac{f_1(\overline{\phi_1(t-s)},\phi_2(t-s))}{1 - ik_1 F} \dot{\phi_1}(s) ds &\stackrel{\mathbb{C}}{=} 0, \\ \dot{\phi_2}(t) + \omega_2 \phi_2(t) + \omega_2 \int_0^t \frac{f_2(\phi_2(t-s),Re(\phi_1(t-s)))}{1 + (k_2 F)^2} \dot{\phi_2}(s) &\stackrel{\mathbb{R}}{=} 0, \\ f_1, f_2 \sim \mathsf{linear}, \omega_1 \in \mathbb{C}, \omega_2 \in \mathbb{R}, f_1 \in \mathbb{C}, f_2 \in \mathbb{R}, \phi_1 \in \mathbb{C}, \phi_2 \in \mathbb{R} \end{split}$$

► Treatment of ordinary integro-differential equations with complex-valued kernel-functions. A background is the following example of a coupled system in physics

$$\begin{split} \dot{\phi_1}(t) + \omega_1 \phi_1(t) + \omega_1 \int_0^t \frac{f_1(\overline{\phi_1(t-s)},\phi_2(t-s))}{1 - ik_1 F} \dot{\phi_1}(s) ds &\stackrel{\mathbb{C}}{=} 0, \\ \dot{\phi_2}(t) + \omega_2 \phi_2(t) + \omega_2 \int_0^t \frac{f_2(\phi_2(t-s),Re(\phi_1(t-s)))}{1 + (k_2 F)^2} \dot{\phi_2}(s) &\stackrel{\mathbb{R}}{=} 0, \\ f_1, f_2 \sim \mathsf{linear}, \omega_1 \in \mathbb{C}, \omega_2 \in \mathbb{R}, f_1 \in \mathbb{C}, f_2 \in \mathbb{R}, \phi_1 \in \mathbb{C}, \phi_2 \in \mathbb{R} \end{split}$$

► Treatment of **partial** integro-differential equations

Thanks for your attention