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Mathematical model:

> ¢:[0,00) = R density correlation function

» F:R — R kernel-function dependent on material, temperature
and density, e.g. F(x) = vix + vax? (vi, v2 > 0)

» mode-coupling theory: ¢ fulfils the following IVP for a nonlinear
integro-differential equation:

t

o) + (1) + / Fo(t— )d(s)ds =0, o0)=1 (1)
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> ¢:[0,00) = R density correlation function

» F:R — R kernel-function dependent on material, temperature
and density, e.g. F(x) = vix + vax? (vi, v2 > 0)

» mode-coupling theory: ¢ fulfils the following IVP for a nonlinear
integro-differential equation:

J0)+o(0)+ [ Fo(e-sNis)ds =0, 60)=1 ()
0
> I|m @(t) = 0: material stays viscous
I|m @(t) # 0: glass-transition
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Mathematical model

Aims

Aims

first part:

> Results on well-posedness and on the asymptotic behaviour of
solutions of (1).

second part:

» Treating problems for certain partial integro-differential equations,
e.g.
t
Do, x) — Au(t,x)—l—/F(u(t—s, x))0su(s, x)ds = 0, +IV, +BC
0
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Formal differentiation of (1) with respect to t leads to
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t

o(t) + (1) + / Fo(t - 5)a(s)ds =0, te[0,00). (1)

Formal differentiation of (1) with respect to t leads to
t

o(t) = —(1+ F(1))o(t) — / F'(6(t = 9))d(t — s)d(s)ds.  (2)
IVg(0)=1 = ¢(0)=-1
Assumption: 3t/ = inf{t > 0: ¢(t) =0} >0
@ PO Gy < —(1+ F@)A(E), te o],
Gronwall = ¢(t) < —e FFME e (') <0, contradiction

It follows: ¢ ist strongly monotonically decreasing.
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» F is differentiable, monotonically increasing and locally
Lipschitz-continous on [xg, 1].
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> dxp < 1such that F(xp) = 22 =: G(xp),

1—X0
» F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x, 1].

N F is bounded, monotonically in-
creasing and differentiable on R
F (w.lo.g.),
. 1’
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> Jxo < 1such that F(x) = % =: G(x0),
» F is differentiable, monotonically increasing and locally

Lipschitz-continous on [x, 1].

F is bounded, monotonically in-
creasing and differentiable on R

(w.lo.g.),
i.e., problem (1) with F has a un-

& ique solution ¢ € C([0,0),R)
S that is strongly monotonically de-

t = creasing.
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> Jxo < 1such that F(x) = % =: G(x0),
» F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x, 1].

G ..
Furthermore, monotonicity leads
to:

F xo < ¢(t) < 1forall t €]0,00)
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> dxp < 1such that F(xp) = 22 =: G(xp),

1—X0
» F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x, 1].

© Furthermore, monotonicity leads
to:
F xo < ¢(t) <1 forall t €l0,00)
Due to the equality of F and F on
& [x0,1], ¢ is a solution of the origi-
S nal problem.
X, 1
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> dxp < 1such that F(xp) = 22 =: G(xp),

1—X0
» F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x, 1].

G ..
Furthermore, monotonicity leads
to:

F xo < ¢(t) < 1forall t €]0,00)

Due to the equality of F and F on

& [x0,1], ¢ is a solution of the origi-

nal problem.
t = In particular, ¢ is convergent.
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(ii) F is differentiable, monotonically increasing and locally
Lipschitz-continous on [xp, 1].
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Partial inte fferential equations

Theorem
Let F : R — R fulfil
(i) 3xo < 1 such that F(xp) = 22 =: G(xo),

17X0

(ii) F is differentiable, monotonically increasing and locally
Lipschitz-continous on [xp, 1].
Then problem (1) with F has a unique solution ¢ € C*([0,c0),R) that is

monotonically decreasing and convergent against the maximal fixed-point
g € [x0,1) of F with G.
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! 1 A
F'(g) < m(z G'(g))
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Theorem
1

F'(g) < A=gr (=G'(g)) = F>0: lim e*(4(t) —g) =0.

sketch of proof (in case of g =0, i.e. F(0) =0):
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Theorem
/ 1 _ ! B Sot —
F'(g) < m(— G'(g)) = 3s>0: lim e*(¢(t) —g)=0.
sketch of proof (in case of g =0, i.e. F(0) =0):

» One proves by induction: Vn € N : [ t"¢(t)dt < cc.
0
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Theorem

Fle) < ogp (= C@) = >0 lim e(6(6) ~£) = 0.

sketch of proof (in case of g =0, i.e. F(0) =0):

» One proves by induction: Vn € N : [ t"¢(t)dt < cc.
0

> It follows: 3so > 0: [ e2'p(t)dt < oo, ie., lim e®fp(t) = 0.
0 t—o0
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Theorem
1

Flo)< g (= 6@) = 3%>0: lim e(g(t) —8) =0.

sketch of proof (in case of g =0, i.e. F(0) =0):

» For this we need to prove:

Je €(0,1),x0 >0Vne N, x> xp:

/X t"F(o(t))dt < (1—¢) /X t"(t)dt. (3)

X0 X0
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Theorem

Fle)< oo (= Cle) = 3n>0: lim e(6(0) —g) =0

sketch of proof (in case of g =0, i.e. F(0) =0):

» For this we need to prove:

Je €(0,1),x0 >0Vne N, x> xp:

/X t"F(o(t))dt < (1—¢) /X t"(t)dt. (3)

X0 X0

W. Gotze, L. Sjogren: General Properties of Certain Non-linear
Integro-Differential Equations, Journal of Mathematical Analysis and
Applications 195, 230-250 (1995):
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Theorem

Fl&) < g (CG@) = 5> 0: fim e (6(0)-£) =0,

sketch of proof (in case of g =0, i.e. F(0) =0):
» For this we need to prove:
Je €(0,1),x0 >0Vne N, x> xp:
X X 4
/ P F(6(8))dt < (1 — s)/ oonyde. Y

X0 X0

If F is absolutely monotone and fulfils F’(0) < 1, then one has (4).
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Monotone kernel-functions: rates of convergency

Theorem
FlO)< o (e = 35> 03 im e (6(0)~g) =0

sketch of proof (in case of g =0, i.e. F(0) =0):
» For this we need to prove:

Je €(0,1),x0 >0Vne N, x> xp:

/ TR (6(8)dt < (1— <) / “osya. P

X0 X0
If F is absolutely monotone and fulfils F’(0) < 1, then one has (4).

ansatz: construction of an absolutely monotone function
H :[0,1] — R that fulfils H'(0) < 1 and F(x) < H(x) < G(x) for
all x € [0,1).
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We obtain:

356(0 1) x0>OVn€Nx>X0
ft"F ))dt < f t"H(p(t))dt

X

(gétze,Sjijgren

(1<) [ tno(t)de

X0
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We obtain:

356(0 1) x0>OVn€Nx>X0
ft"F ))dt < f t"H(p(t))dt

X

(gétze,Sjijgren

(1<) [ tno(t)de

We need: ’
H{0)<1l«< F(0)<1
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Kernel-function: mallness-conditions

Partial integro-differential equations

Theorem
Let F:R — R and g < 1 the maximal fixed-point of F(x) = =

Furthermore, let F be continuously differentiable and monotonlic;//y
increasing on [g, 1] with F'(g) < ﬁ.

Then problem (1) with F has a unique solution ¢ € C*([0,0),R) that is
monotonically decreasing, satisfying

C fim e%t S
350>0't|£206 [¢(t) — g] = 0.
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Remarks

» An extension on cases of more general limits g # 0 can be obtained
easily.

> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

t

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.

0
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» An extension on cases of more general limits g # 0 can be obtained
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> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

t

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.

0

This ansatz leads to blow-up solutions.
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> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

t

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.

0

This ansatz leads to blow-up solutions.
» Examples:
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Remarks

» An extension on cases of more general limits g # 0 can be obtained
easily.

> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

t

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.

0

This ansatz leads to blow-up solutions.
» Examples:

1. F(x) = —x*+2x
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Remarks

» An extension on cases of more general limits g # 0 can be obtained
easily.

> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

t

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.

0

This ansatz leads to blow-up solutions.
» Examples:

L Fx)=—-x"+2x = o(t)—>2- \/g exponentially.
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Remarks

» An extension on cases of more general limits g # 0 can be obtained
easily.

> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.
0

This ansatz leads to blow-up solutions.
» Examples:

L Fx)=—-x"+2x = o(t)—>2- \/g exponentially.
2. F(x)= —x*+2x—-3
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Remarks

» An extension on cases of more general limits g # 0 can be obtained
easily.

> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

u(t) = F(£) + / k(¢ — 5)g(u(s))ds.
0

This ansatz leads to blow-up solutions.
» Examples:

L Fx)=—-x"+2x = o(t)—>2- \/g exponentially.
2. Fx)=—x*+2x—3 = 3T>0:0(t) > —coift = T.
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Remarks

» An extension on cases of more general limits g # 0 can be obtained
easily.

> Let k(t) :=1—®(2), f(t) :=t, g(x) :==-1—-F(1 - x).
u(t) := 1 — ®(t) fulfils the following Volterra-integral equation

t
u(t) = F(£) + / K(t — s)g(u(s))ds.
0
This ansatz leads to blow-up solutions.

» Examples:

L Fx)=—-x"+2x = o(t)—>2- \/g exponentially.

2. Fx)=—x*+2x—3 = 3T>0:0(t) > —coift = T.
> In case of g = 0, F/(0) = 1, F(x) < x one has ®(t) ~ t~2.
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Kernel-functions under smallness-conditions

t

(t) + d(t)+ Of F((t —s))é(s)ds = 0.
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Kernel-functions under smallness-conditions

ansatz:  ¢(t) + ¢(t)+ f F(o(t — s))d(s)ds = 0.

small nonlmear perturbation 1
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Kernel-functions under smallness-conditions

ansatz:  ¢(t) + ¢(t)+ f F(o(t — s))d(s)ds = 0.

small nonlmear perturbation 1

We start considering the following related linear problem:
t

o(e) + () + [ m(e = )o(s)ds =0, 6(0) =1, (5)
where m: [0,00) — R. ’
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Kernel-functions under smallness-conditions

Kernel-functions under smallness-conditions

ansatz:  ¢(t) + ¢(t)+ f F(o(t — s))d(s)ds = 0.

small nonlmear perturbation 1

We start considering the following related linear problem:
t

o(e) + () + [ m(e = )o(s)ds =0, 6(0) =1, (5)
where m: [0,00) — R. ’

1. If m’ is exponentially decaying (resp. polynomial decaying) "fast
enough”, then ¢ converges exponentially (resp. polynomially)
against zero.
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Kernel-functions under smallness-conditions

Kernel-functions under smallness-conditions

ansatz:  ¢(t) + ¢(t)+ f F(o(t — s))d(s)ds = 0.

small nonlmear perturbation 1

We start considering the following related linear problem:
t

o(e) + () + [ m(e = )o(s)ds =0, 6(0) =1, (5)
where m: [0,00) — R. ’

1. If m’ is exponentially decaying (resp. polynomial decaying) "fast
enough”, then ¢ converges exponentially (resp. polynomially)
against zero.

2. Fixed-point arguments: Let u be an element out of a suitable class of
functions and Tu be the solution of (5) with m = F o u. Schauders
fixed-point theorem leads to a solution of the nonlinear problem.
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Intro
Monotone kernel-fi

Kernel-functions under smallness- condmons

Partial integro-differential equations

Theorem

Lete € (0,1) and f € C* ([—5, 5] ,R) twice differentiable in x =0,
f(0) = f'(0) = 0 and f(1) > —1. Then there exists a x € (0, 1] such that:

Problem (1) with F := k - f has a unique solution ¢ € C*([0, 00), R)
satisfying

343nf(1) ,

4 . .
l6(1)] < I and |g(t) < e

< 33

Patrick Kurth
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Monotone kernel-fi

Kernel-functions under smallness- condmons

Partial integro-differential equations

Theorem

Lete € (0,1) and f € C* ([—5, 5] ,R) twice differentiable in x =0,

f(0) = f'(0) = 0 and f(1) > —1. Then there exists a x € (0, 1] such that:
Problem (1) with F := k - f has a unique solution ¢ € C*([0, 00), R)

satisfying

343nf(1) ,

4 . .
l6(1)] < I and |g(t) < e

< 33

examples:
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Intro
Monotone kernel-fi

Kernel-functions under smallness- condmons

Partial integro-differential equations

Theorem

Lete € (0,1) and f € C* ([—5, 5] ,R) twice differentiable in x =0,
f(0) = f'(0) = 0 and f(1) > —1. Then there exists a x € (0, 1] such that:
Problem (1) with F := k - f has a unique solution ¢ € C*([0, 00), R)

satisfying

343nf(1) ,

4 . .
l6(1)] < I and |g(t) < e

< 33

examples:
() F(x) = 202 —x*)
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Kernel-function:

Partial integro-differential equations

Theorem
Lete € (0,1) and f € C* ([—5, 5] ,R) twice differentiable in x =0,

3¢ 3¢
f(0) = f'(0) =0 and (1) > 1. Then there exists a r € (0, 1] such that:
Problem (1) with F := k - f has a unique solution ¢ € C*([0, 00), R)

satisfying

4 3+3kf(1) o 343kf(1)
) < —e™ t d t) < e £
606 < 3 3erry® and 19(t)] < e
examples:
(i) F(x) = 225 (62— x%),

(i) F(x) ==+ (3v21-3) x>
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Kernel-functions under smallness-conditions

Remark
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Kernel-functions under smallness-conditions

Remark

» The above presented methods can easily be extended on problems
with more-parametric kernel-functions:

t

gi)(t)+¢(t)+/F(qb(t—s),t—s,s)qf)(s)ds:o, #(0) = 1.

0
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Introduction
Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

Partial integro-differential equations

n
Let G C R" a bounded domain, A= Y —d;a;(-)9; + a(-) an elliptic
ij=1
operator with positive spectrum o(A) C [g,00) (g > 0).
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Partial integro-differential equations

Partial integro-differential equations

n
Let G C R" a bounded domain, A= Y —d;a;(-)9; + a(-) an elliptic
ij=1
operator with positive spectrum o(A) C [g,00) (g > 0). We consider the
following problem ((t, x) € [0, 00) x G)
t
ue(t, %) + Au(t, x) + / Fu(t — 5, x))ur(s, x)ds = 0,
0 (6)
IC: u(0,x) = up(x), x € G
BC: u(t,x) =0, x € 9G,

where F : R — R.
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Partial integro-differential equations

Partial integro-differential equations
t
ue(t, %) + Au(t, x) +/F(u(t— 5. x))ur(s, x)ds = 0,
0 (6)
IC: u(0,x) = up(x), x € G
BC: u(t,x) =0, x € 9G,

where F: R — R.
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Partial integro-differential equations Remarks

Partial integro-differential equations

ut(t,x)+Au(t7x)+/F(u(t—s,x))ut(s7x)ds:0,

0 (6)
IC: u(0,x) = up(x), x € G

BC: u(t,x) =0, x € 9G,
where F : R — R.

aim: interpretation of the convolution-term in suitable function-spaces
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Partial integro-differential equations Remarks

Partial integro-differential equations

ut(t,x)+Au(t7x)+/F(u(t—s,x))ut(s7x)ds:0,

0 (6)
IC: u(0,x) = up(x), x € G

BC: u(t,x) =0, x € 9G,
where F : R — R.

aim: interpretation of the convolution-term in suitable function-spaces

If 4k > n, H?*(G) is a Banach-algebra, i.e.
u,v € H*(G) = uv € H?}(G)
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Partial integro-differential equations Remarks

Partial integro-differential equations

ut(t,x)+Au(t7x)+/F(u(t—s,x))ut(s7x)ds:0,

0 (6)
IC: u(0,x) = up(x), x € G

BC: u(t,x) =0, x € 9G,

where F : R — R.
aim: interpretation of the convolution-term in suitable function-spaces

If 4k > n, H?*(G) is a Banach-algebra, i.e.
u,v € H*(G) = uv € H?}(G)

problem: || - || 12(g)-norm does not interchange with e~
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Partial integro-differential equations Remarks

Partial integro-differential equations

(£, %) + Au(t, x) +/F(u(t— 5. x))ur(s, x)ds = 0,
0 (6)
IC: u(0,x) = up(x), x € G
BC: u(t,x) =0, x € 9G,

where F : R — R.
aim: interpretation of the convolution-term in suitable function-spaces

If 4k > n, H?*(G) is a Banach-algebra, i.e.
u,v € H*(G) = uv € H?}(G)

tA

problem: || - || 2(g)-norm does not interchange with e~**, solution:

I| - ||D(Ak)—norm.
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Partial integro-differential equations Remarks

Partial integro-differential equations

(£, %) + Au(t, x) +/F(u(t— 5. x))ur(s, x)ds = 0,
0 (6)
IC: u(0,x) = up(x), x € G
BC: u(t,x) =0, x € 9G,

where F : R — R.
aim: interpretation of the convolution-term in suitable function-spaces

If 4k > n, H?*(G) is a Banach-algebra, i.e.
u,v € H*(G) = uv € H?}(G)

tA

problem: || - || 2(g)-norm does not interchange with e~**, solution:

| - lpaxy-norm. ([[ullpary = [lul| + [|Aul|)
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A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:

3G, G >0V e D(Ak) : Cl”“”Hz"(G) < HU”D(A“) < C2H“||H2“(G)'
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:

3G, G >0V e D(Ak) : Cl”“”HZ"(G) < HU”D(A“) < C2HU||H2“(G)'

> Lemma: 4k > n, F € C?*(R,R), |FO(x)| < wi|x|* (i = 1,...,2k),
u € D(AF) N C>=(G)
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:

E|C1, C2 >0Vue D(Ak) : Cl”“”HZ"(G) < HU”D(A“) < C2HU||H2“(G)

> Lemma: 4k > n, F € C?*(R,R), |FO(x)| < wi|x|* (i = 1,...,2k),
ue D(AF)NC=(G) =

Cavillull gz, Nlulloeasy > 1

Con|ul|% g ullppas < 1
F(u) € D(A*) : ||F ()|l pear) < { DAY’ “)
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Introduction
Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:

E|C1, C2 >0Vue D(Ak) : Cl”“”HZ"(G) < HU”D(A“) < C2HU||H2“(G)

> Lemma: 4k > n, F € C?*(R,R), |FO(x)| < wi|x|* (i = 1,...,2k),
ue D(AF)NC=(G) =

oc+2

Cavillullpany:  Mlullpiary <1
k D(A ) (AK)
F(u) € D(A%) = [[F(u)llpary < { Canllullpiass llulloas > 1

> Lemma: Let 4k > n, F € C**(R,R) with F?* locally
Lipschitz-continuous and F()(0) =0 (i =0,...,2(k — 1)):
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:

E|C1, C2 >0Vue D(Ak) : Cl”“”HZ"(G) < HU”D(A“) < C2HU||H2“(G)

> Lemma: 4k > n, F € C?*(R,R), |FO(x)| < wi|x|* (i = 1,...,2k),
ue D(AF)NC=(G) =

oc+2

Cavillullpany:  Mlullpiary <1
k D(A ) (AK)
F(u) € D(A%) = [[F(u)llpary < { Canllullpiass llulloas > 1

> Lemma: Let 4k > n, F € C**(R,R) with F?* locally
Lipschitz-continuous and F()(0) =0 (i =0,...,2(k — 1)):

YM >0 3K > 0 Vuy, 1 € D(A)NC®(G), |luillpiary < M (i =1,2):
[|F(u1) — F(u2)llpary < Kllur — uallpgary-
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

A= > —0a;(-)0; +a(-) (formally), G C R" smooth boundary
ij=1

» elliptic regularity: Let k € N and a;;,a € C?~1(G), then one has:

E|C1, C2 >0Vue D(Ak) : Cl”“”Hz"(G) < HU”D(A“) < C2HU||H2}<(G)

» Lemma: 4k > n, F € C?K(R,R), |FO(x)| < vi|x|* (i = 1,...,2k),
ue D(A)NC=(G) =

Coval| |3y Ilullppary <1
F(u) € D(A%) : ||F(u )||D(Ak>s{ DAY’ )

Covilullpas llullpeary > 1
> Lemma: Let 4k > n, F € C*(R,R) with F?* locally
Lipschitz-continuous and F()(0) =0 (i =0,...,2(k — 1)):
YM >0 3K > 0 Vuy, 1 € D(A)NC®(G), |luillpary < M (i =1,2):
[|F(u1) — F(u2)llpary < Kllur — uallpgary-
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aim: Declaration of F(u) in D(AK) if u € D(AX) N C>(G).
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

aim: Declaration of F(u) in D(A¥) if u € D(A¥) N C*°(G). One has

18l (u+1)l71= Bl v
OPF(u) = Z F (u) Z Z Crrop H H 0% u,
p=1 p=1 i=1 I=1

18]
3 .
veNY ‘7|7|:M7levj:|/3\
=

where C, ., >0 and o] , € Ng with o, < 8 and |aj | = 1.
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Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

18] (1) 211 Bl v
OPF(u) = Z FU9 () Z CH,%,,HH(?O‘WU
p=1

151 LI p=1 i=1 =1
YEN, ,|7|=u,_22m-=|ﬁ|
=

inary and partial integro-differential equati ith applications in glass-



Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

18] (1) 211 Bl v
OPF(u) = Z F(”)(u) Z CH,%,,HH(?O‘LPU

p=1 181 18] . p=1 i=11=1
€N, ,|7|=u,_22m-=|ﬁ|
=

Bl v
[ (F(u)Il - < %:;Zp: Gl FO ()| [T 0%eu
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

18l (n+1)P17 1Bl i

Z F() (1) Z Curp H H %0y

p=1 181 18] . p=1 i=11=1
€N, ,|7|=u,_22m-=|ﬁ|
=

[ (F(u)Il - < ;;;%WW(WmHHWW

i=1/=1
Hélder 0 18] || i o
< 222 CuapllFY(u)llse IT || TT 0%eu
vy P i=1|lI=1 21_\713_\
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

18l (n+1)P17 1Bl i

OPF(u) = Z FU9 () Z Cu,%pHHaa;’P”
p=1 18] p=1 i=1 /=1
VENG lyl=pn, 3 =18l

18] i i
[T [T 0%

i=1/=1

[ (F(u)Il - < %: ;ZPZ Gl FO ()|

Hélder 18]

i

< XY Gl FU (W)l TT || TT 0o u
w7y P i=1||1=1 2(8]
Halder 0 Bl iy i
< 222 Gl FY(u)lle T IT || 0wl
© oy p i=11=1
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

18] (1) 211 Bl v
OPF(u) = Z FU9 () Z CH,%,,HH(?O‘WU
p=1 p=1 i=1/=1

1] =5
YEN, ,|7|=u,_22m-=|ﬁ|
=

18] i i
[T [T 0%

i=1/=1

[ (F(u)Il - < ;;;quwwm

Hélder 0 18] || i o

< 222 CuapllFY(u)llse IT || TT 0%eu
vy P i=1|lI=1 2|8]

Hélder 0 18] i o i

< 222 CuapllFY(u)llse IT IT (0o ul| ),
woy p i=1/=1 7

18] )
< XYY Gl FUW)lo TN oy -
BoYop i=1 wh i
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

18] (1) 211 Bl v
OPF(u) = Z FU9 () Z CH,%,,HH(?O‘WU
p=1

151 LI p=1 i=1 =1
YEN, ,|7|=u,_22m-=|ﬁ|
=

18] i i
[0°(F) < Z XX Gl F(W)llso || IT TT 0% u
Loy p i=1/=1
Hélder 0 18] || i o
< XXX Cuapl P (u)llee T || TT 0% ru
vy P i=1|lI=1 2|8]
Holder 0 1B] i o i
< XXX CGuapl F¥(W)llse IT IT ||0%rufl ),
woy p i=1/=1 7

18] )
< XYY Gl FUW)lo TN oy -
BoYop i=1 wh i

. . h 1—h
Gagliardo-Nirenberg: 1 = miq = llullwnsey < Cllullymageyllull={e):
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Partial integro-differential equations

18l

OPF(u) = ZF(”)(U) Z

1] =5
YEN, ,|7|=u,_22m-=|ﬁ|
=

18] i
[O°(F(u)ll < X3 Cuqpwallulls TT €U 18D ull i 1wl
BoYoP

Patrick Kurth

Introduction
Preliminary remarks
Well-posedness and asymptotic behaviour

Remarks

(n+1)P17 1Bl i

Cuvp H H 9% u

p=1 i=1 =1

I
i~ 18]
o .

i=1
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

18] (1) 211 Bl v
OPF(u) = Z FU9 () Z CH,%,,HH(?O‘WU

p=1 181 18] . p=1 i=11=1
€N, ,|7|=u,_22m-=|ﬁ|
=

I
i~ 18]
o .

i=1

18] i
[O°(F(u)ll < X3 Cuqpwallulls TT €U 18D ull i 1wl
BoYoP

Sobol
18] < 2k, 4k > n "= lulloo < Gollull e < & lullppar).
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

18l (n+1)P17 1Bl i

O°F(u) =Y F¥(u) 3 oo [T ] 0% u

p=1 181 18] . p=1 i=11=1
€N, ,|7|=u,_22m-=|ﬁ|
=

I
i~ 18]

18] i
[0°(F(u)| < ZZZC%%PW”UHSO_I—IIC(’-7‘5|)||U||;|-;3\|E\HU|OO
BoYoP i=

Sobolev
B < 2k, 4k > n [ulloo < Collullmer < &llullpiary.

It follows

Covallullmy: Nullopas) <1

@3% HUH%*jf lullpeaxy > 1

IF ()l < {
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

18l (n+1)P17 1Bl i

O°F(u) =Y F¥(u) 3 oo [T ] 0% u

p=1 181 18] . p=1 i=11=1
€N, ,|7|=u,_22m-=|ﬁ|
=

I
i~ 18]

18] i
[0°(F(u)| < ZZZC%%PW”UHSO_I—IIC(’-7‘5|)||U||;|-;3\|E\HU|OO
BoYoP i=

Sobolev
B < 2k, 4k > n [ulloo < Collullmer < &llullpiary.

It follows

Covallullmy: Nullopas) <1

Gl 2, lullogae > 1

IF ()l < {

Still to prove: F(u) € D(A¥) (boundary values).
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Still to prove: F(u) € D(AX).
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Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).
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Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpe if ue HY(G) N C°G).
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Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpg if u€ HY(G) N C°(G). One has (elliptic regularity)

D(A) = H3(G) N H*(G) = {u € H*(G)|Su = 0}.
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpg if u€ HY(G) N C°(G). One has (elliptic regularity)

D(A) = H3(G) N H*(G) = {u € H*(G)|Su = 0}.

u € D(AK) C H*(G)
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Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpg if u€ HY(G) N C°(G). One has (elliptic regularity)

D(A) = H3(G) N H*(G) = {u € H*(G)|Su = 0}.

Sobolev,4k>n
) =

u € D(A¥) C H*(G u€e C%G), ulopg =0
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Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpg if u€ HY(G) N C°(G). One has (elliptic regularity)
D(A) = H3(G) N H*(G) = {u € H*(G)|Su = 0}.

uc D(Ak) C H2k(G) Sobole:v>,4k>n

F(0)=0
Q=0 F(u)lpe =0

uec CO(C), u‘a(; =0
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Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpg if u€ HY(G) N C°(G). One has (elliptic regularity)
D(A) = H3(G) N H*(G) = {u € H*(G)|Su = 0}.

ye D(Ak) C H2k(G) Sobole:v>,4k>n uc CO(G), U‘BG -0

FOZ0 £ ()oe = 0 ““S9 F(u) € D(A) N C2%(G).
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Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Still to prove: F(u) € D(A¥). Seen above: F(u) € H?¢(G).

Let S : H'(G) — L*(OG) be the (unique) trace-operator that satisfies
Su = ulpg if u€ HY(G) N C°(G). One has (elliptic regularity)

D(A) = H}(G) N H*(G) = {u € H*(G)|Su = 0}.
u € D(AK) C H?%(G) S:'j""e:“;“b” ue CG), ulpe =0
T2 Fu)loe = 0 S F(u) € D(A) N C2X(G).

One shows by iteration: F(u) € D (A¥)
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rnel-functions t s Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Lemma

4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AF) N C>=(G).

a2k

CvillullBanys  Nullpeary <1
= F(u) € D(AY): ||F(u < A
(u) € D(AY) : [IF( )llo<Ak>—{ Conllullaty  ullppany > 1

Patrick Kurth Ordinary and partial integro-differential equations with applications in glass:



Introduction
Preliminary remarks
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Lemma

4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AF) N C>=(G).

Gavillullpanys  Nlullpiary <1

= F(u) € D(AY): ||F(u < 3(A)
(u) € DIAT) = [IF()loan { Conllulgi28, Tullogs > 1

Now, let F as in the above lemma and u,v € D(A¥) N C>(G), then one

has:
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ions
Partial integro-differential equations Remarks

Lemma

4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AF) N C>=(G).

Contl6l3ays lloa <1
= F(u) € D(AY): ||F(u < 3A)
() & DA P logan < { Conllull3iZ,  Nullogr) > 1
Now, let F as in the above lemma and u,v € D(A¥) N C>(G), then one
has: F(u),v € H?**(G) N C?(G) and due to 4k > n:
F(u)v € H*(G) N C?(G).
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Lemma
4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AF) N C>=(G).

a2k

ConllulBgay  Nullogan < 1
Conllulg2E, Nlullogan > 1

= F(U) € D(Ak) : ||F(u)||D(Ak) < {

Now, let F as in the above lemma and u,v € D(A¥) N C>(G), then one
has: F(u),v € H?**(G) N C?(G) and due to 4k > n:

F(u)v € H?*(G) N C?(G). One can prove analogously by iteration
method: F(u)v € D(A¥) and

[F(u)vlipay < GlIF(u)vi[pex < GCIF(u)lpee][v ] e
G

C
< ?HF(U)HD(Ak)HVHD(Ak) = C3||F(U)HD(A")||VHD(A‘<)~
1
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<ernel-function bs5-C ns Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Lemma
4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AF) N C>=(G).

a2k

ConllulBgay  Nullogan < 1
Conallull&2E, Nullogs > 1

= F(U) € D(Ak) : ||F(u)||D(Ak) < {

Now, let F as in the above lemma and u,v € D(A¥) N C>(G), then one
has: F(u),v € H?**(G) N C?(G) and due to 4k > n:

F(u)v € H?*(G) N C?(G). One can prove analogously by iteration
method: F(u)v € D(A¥) and

[F(u)vlipary < GIIF(u)vlpex < GCIIF(u)l|pex][ v s
G

C
< ?HF(U)HD(Ak)HVHD(Ak) = C3||F(U)||D(Ak)||VHD(Ak)~
1

One proves analogously: F(u)vw € D(AX) if u,v,w € D(AK) N C>=(G).
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ernel-function bs5-C ns Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Lemma
4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AF) N C>=(G).

a2k

ConllulBgay  Nullogan < 1
Conllulg2E, Nlullogan > 1

= F(U) € D(Ak) : ||F(u)||D(Ak) < {

Now, let F as in the above lemma and u,v € D(A*) N C>(G), then one
has: F(u),v € H?*(G) N C?*(G) and due to 4k > n:

F(u)v € H?(G) N C?(G). One can prove analogously by iteration
method: F(u)v € D(A*) and

[F(u)vlipary < GlIF(u)v][pee < GCIF(u)lpee][ V]| e
G

C
< ?HF(U)HD(Ak)HVHD(Ak) = C3||F(U)HD(A")||VHD(A‘<)~
1

One proves analogously: F(u)vw € D(AX) if u,v,w € D(AK) N C>=(G).
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Lemma
4k > n, F € C?*(R,R), |FO(x)| < wilx|* (i=1,...,2k),
u € D(AK).

a2k

ConllulBgay  Nullogan < 1
Conllulg2E, Nlullogan > 1

= F(U) € D(Ak) : ||F(u)||D(Ak) < {

Now, let F as in the above lemma and u, v € D(A¥) , then one
has: F(u),v € H?¢(G) and due to 4k > n:
F(u)v € H**(G) . One can prove analogously by iteration

method: F(u)v € D(A¥) and

[F(u)vlipany < GlIF(u)v][pex < GCIF(u)lpee][ v e
G

C
< ?HF(U)HD(Ak)HVHD(Ak) = C3||F(U)HD(A")||VHD(A‘<)~
1

One proves analogously: F(u)vw € D(A¥) if u,v, w € D(AF).
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Partial integro-differential equations Remarks

class of solutions: Let 4k > n, G C R" be a bounded domain with
C%_boundary. u € C°([0, ), D(A¥)) N C([0, 00), D(A*1)) is called a
solution of (6), if

t

ut(t)+Au(t)+/F(u(t—s))ut(s)ds )0, u(0) = u.
0
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Partial integro-differential equations Remarks

class of solutions: Let 4k > n, G C R" be a bounded domain with
C%_boundary. u € C°([0, ), D(A¥)) N C([0, 00), D(A*1)) is called a
solution of (6), if

t

ut(t)+Au(t)+/F(u(t—s))ut(s)ds P90, u(0) = uo,

0

One has (s — F(u(t — s))u:(s)) € C°(]0, 00), L2(G)) if t € [0,00).
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Next steps:
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Preliminary remarks
Well-posedness and asymptotic behaviour

Partial integro-differential equations Remarks

Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

u e C°([0,00), D(A%)) N CY([0, 00), D(A*1))

u(t) + Au(t) +/m(t _S)u(s)ds =0, e (0,00),
0

u(0) = up € D(A*™),  m e C*([0, 00), D(A¥)).
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

u e C°([0,00), D(A%)) N CY([0, 00), D(A*1))

u(t) + Au(t) +/m(t _S)u(s)ds =0, e (0,00),
0

u(0) = up € D(A*™),  m e C*([0, 00), D(A¥)).

» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C ={u e CY([0,00), D(A¥)) : u(0) = uo,
lu(®) | oearys lue(t)llpeary: [lu(e)]], llue(t)]| decay exponentially} .
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Well-posedness and asymptotic behaviour
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Next steps:
» Well-posedness and asymptotic-behaviour results for the related
linear problem

u e C°([0,00), D(A%)) N CY([0, 00), D(A*1))

u(t) + Au(t) +/m(t _S)u(s)ds =0, e (0,00),
0

u(0) = up € D(A*™),  m e C*([0, 00), D(A¥)).

» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C ={u e CY([0,00), D(A¥)) : u(0) = uo,
lu(®) | oearys lue(t)llpeary: [lu(e)]], llue(t)]| decay exponentially} .

» Fixed-point arguments lead to a solution for the nonlinear problem.
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Well-posedness and asymptotic behaviour
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Next steps:
» Well-posedness and asymptotic-behaviour results for the related
linear problem

u € C°([0,00), D(A)) N C([0,00), D(A*1))

ur(t) + Au(t) + / m(t — s)u(s)ds =0, t € (0,00),
0

u(0) = up € D(AY),  m € CY([0, 00), D(AX)).

» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C ={u e CY([0,00), D(A*)) : u(0) = uo,
lu(®) | oear)s lue(t)lpeary: [lu(e)]], llue()]| decay exponentially} .

» Fixed-point arguments lead to a solution for the nonlinear problem.
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

ur(t) + Au(t) + /t m(t — s)uy(s)ds =0, t € (0,00),

u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).
Lemma

Let ug € D(AK*1) and m € C1(]0, ), D(AK)) with m(0)(x) > —q +¢

for ae > 0 and for all x € G. Furthermore, let m.(t)v € D(AK) for all

t € [0,00) and for all v € D(AK). In addition to that, let

|me ()] pary < we™ <t and tl_i)m |m(t)lpcaxy = O, where c; > ¢ and

w > 0 such that Gw < g(¢c; —¢) and %‘;w < &(ec1 —€). Then one has
Guw—eg(cg—¢)

[ue(t)pary < Aol pacye o+

e—a Gu-clg-2),
and [|u(t)|[p(ar) < ||AU0||D(Ak)me a-c
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related

linear problem .

ue(t) + Au(t) + / m(t — s)uy(s)ds =0, te(0,00),
J0
u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).

Lemma

Let ug € D(AK*1) and m € C1([0, <), D(AK)) with m(0)(x) > —q +¢
for ae > 0 and for all x € G. Furthermore, let m.(t)v € D(AK) for all
t € [0,00) and for all v € D(AK). In addition to that, let

|me ()] pary < we™ <t and tll>ngo |m(t)l|paxy = O, where ¢ > ¢ and

w > 0 such that Gw < g(c; —¢) and %w < &(c1 —€). Then one has

iw—s(clfe)

1
as well as  |Jug(t)|| < [luol|paye™ a5 °

S
e—q ge—dazd
and |lu(t)|| < lluollp(ay =€ -
( )%w—s(q—e)
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

ur(t) + Au(t) + /Ot m(t — s)u(s)ds =0, te(0,00),

u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).

» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C ={u e CY([0,00), D(A*)) : u(0) = uo,
(8l oy 1(0) oy, [15(E) ], ()] decay exponentially}

» Fixed-point arguments lead to a solution for the nonlinear problem.
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Let 4k > n, G C R" be a bounded domain with C2k—boundary,

up € D(AK*1) and F € C?*F(R,R) with Fk+1) Jocally
Lipschitz-continuous and F(ug(x)) > —q + ¢ for a € > 0 and for all
x € G.
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Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Let 4k > n, G C R" be a bounded domain with C2k—boundary,

up € D(AK*1) and F € C?*F(R,R) with Fk+1) Jocally
Lipschitz-continuous and F(ug(x)) > —q + ¢ for a € > 0 and for all
x € G.

i) Let ¢; > e.
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Let 4k > n, G C R" be a bounded domain with C2k—boundary,

up € D(AK*1) and F € C?*F(R,R) with Fk+1) Jocally
Lipschitz-continuous and F(ug(x)) > —q + ¢ for a € > 0 and for all
x € G.

i) Let ¢1 >e.
i) Let w > 0 such that Gw < &(c; — ¢) and %w <ela —e).
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Let 4k > n, G C R" be a bounded domain with C2k—boundary,

up € D(AK*1) and F € C?*F(R,R) with Fk+1) Jocally
Lipschitz-continuous and F(ug(x)) > —q + ¢ for a € > 0 and for all
x € G.

i) Let ¢1 >e.
i) Let w > 0 such that Gw < &(c; — ¢) and %w <ela —e).

jii) Let a > 0 such that (o + 1)©e==la=s) < _¢

Cl—¢€ -
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Let 4k > n, G C R" be a bounded domain with C2k—boundary,
up € D(AK*1) and F € C?*F(R,R) with Fk+1) Jocally
Lipschitz-continuous and F(ug(x)) > —q + ¢ for a € > 0 and for all
x € G.

i) Let c; > e.
i) Let w > 0 such that Gw < (¢ — ¢€) and ng <e(er—e).

Gw—e(c1 —s)

Cl—¢€ _C]'

)
)
iii) Let & > 0 such that (o + 1)
iv) Let v; > 0 such that

o E—CQC «
v1C3C4||AU0||D(+jk) <C3w—5(c1—5)> <w

c—c a+2k
and v GGl Aug | 312554 | ——— <w.
Guw —e(a —¢)
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Let 4k > n, G C R" be a bounded domain with C2k—boundary,

up € D(AK*1) and F € C?*F(R,R) with Fk+1) Jocally
Lipschitz-continuous and F(ug(x)) > —q + ¢ for a € > 0 and for all
x € G.

i) Let c; > e.
i) Let w > 0 such that Gw < &(c; — ¢) and ng <ela —e).

Gw—e(c1 —s)

Cl—¢€ _C]'

)
)
iii) Let & > 0 such that (o + 1)
iv) Let v; > 0 such that

o E—CQC «
v1C3C4||AU0||D(+jk) <C3w—5(c1—5)> <w

c—c a+2k
and v GGl Aug | 312554 | ——— <w.
Guw —e(a —¢)

Furthermore, let
|F ’<v1|x|o‘ i=0,...,2k+1, x e R.
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Solution in

u € CO([0,00), D(A¥)) N C1([0, 00), D(A*71)) - u(0) "= up,
—c Gu—elg—e)
”U(t)”D(Ak) < ”AUO”D(A’()CygiEi(c}—E))e c—e t’
Gu—elq=c)
C:= ||“f(t)HD(Ak) < ||AU0HD(Ak)e a-e t,

C
??w—s(cl—s)

- 24—y
Ju(t) < ||U0||D(A)me CEC

C
C—Ow—s(cl—s)

lue(t)l < lluollpaye™ a5

t
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Solution in

u € C°([0,00), D(AX)) N C([0, c0), D(CA"*T)) :)u(O) =" ug,
e 3w—e(cp—¢

[u(t)lpary < ||AU0||D(Ak)53L;57(%_E)>e a-e

(g ¢

Co— |ue(t)Ipary < [|Auol|peaxye CIC’E !

: —Ow—s(cl—s)

—C: 7C1 p—-y

Ju(t)]] < HUO”D(A)W a
%w—s(cl—s)

qe a9
ue(t)]| < lluollpaye ™ ==

t

We consider the following self-mapping
T:C—C, vie T(v),

where T (v) is the solution of the related linear problem with
kernel-function m = F o v.
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Solution in

u € C°([0,50), D(A)) N €1([0,50), D(A* 1)) - u(0) "= uo,
e Gu—elg—e)

”U(t)”D(Ak) < ”AUO”D(A’()CygiEi(c}—E))e c—e t’

Gu—elg—e)

C:= ”“f(t)HD(Ak) < ||AU0HD(Ak)e CIC*E t,

- fow—s(cl—s)

—c e

Ju(t) < ”%”D(A)We a ,

%w—s(cl—s)

qe a9
ue(t)]| < lluollpaye ™ ==

t

We consider the following self-mapping
T:C—C, vie T(v),

where T (v) is the solution of the related linear problem with
kernel-function m = F o v.
Due to the smallness-conditions on F (resp. up), 7 is well-defined.
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Next steps:
» Well-posedness and asymptotic-behaviour results for the related
linear problem

ur(t) + Au(t) + /Ot m(t — s)u(s)ds =0, te(0,00),

u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).

» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C ={u e CY([0,00), D(A¥)) : u(0) = uo,

lu(t)llpeary, llue(t) | oeary: [lu(t)l, lue(t)|] decay exponentially} .
» Fixed-point arguments lead to a solution for the nonlinear problem.
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

ur(t) + Au(t) + /Ot m(t — s)u(s)ds =0, te(0,00),

u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).
» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind
C ={u e CY([0,00), D(A¥)) : u(0) = uo,

lu(t)llpeary, llue(t) | oeary: [lu(t)l, lue(t)|] decay exponentially} .
» Fixed-point arguments lead to a solution for the nonlinear problem.

To this, let u® € C, u" := T (u"1) (n € N).
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

ur(t) + Au(t) + /Ot m(t — s)u(s)ds =0, te(0,00),

u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).
» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind
C ={u e CY([0,00), D(A¥)) : u(0) = uo,
lu(t)llpeary, lue(t)oeary, lu(t)ll, l[ue(t)|] decay exponentially} .
» Fixed-point arguments lead to a solution for the nonlinear problem.

To this, let u® € C, u™ := T(v"1) (n € N). One has: YN > 0:
(u")nen € CH([0, N], D(AK)) a cauchy-sequence with limit uy.
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Next steps:

» Well-posedness and asymptotic-behaviour results for the related
linear problem

ur(t) + Au(t) + /t m(t — s)u(s)ds =0, te(0,00),
0
u(0) = up € D(AKTY),  m e CY([0,00), D(AX)).

» Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C ={u e CY([0,00), D(A¥)) : u(0) = uo,
lu(t)llpeary, lue(t)oeary, lu(t)ll, l[ue(t)|] decay exponentially} .
» Fixed-point arguments lead to a solution for the nonlinear problem.
To this, let u® € C, u™ := T(v"1) (n € N). One has: YN > 0:
(u")nen € C([0, N], D(A¥)) a cauchy-sequence with limit upy. If
one defines u(t) := up(t) for t < N, one gets a solution u € C.
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Theorem
Let n <3 and f & C* ([~ Awllo 2, & | Awllogw 2] R), four

times differentiable in x = 0 with "' locally Lipschitz-continuous and

f(0) = f(0) = f"(0) = f"”"(0) = 0. Then there exists a . > 0 such that
the problem

t
up(t, x) + Au(t, x) + / F(u(t — s, x))u:(s,x)ds =0,
0
u(0,x) = uo(x), uljo,00)x86 =0,

with F = k - f has a unique solution u € C'([0,00), D (A)) such that u
and u; decay exponentially with respect to the norms || - [|p(a)y and || - ||.
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The techniques can be used to treat more easier problems for equations
with kernels, that are independend of the space-variable x:

ut(t7x)+Au(t,x)—|—/F(u(t—s))ut(s,x)ds:07

0 (7)
IC: u(0,x) = up(x), x € G

BC: u(t,x) =0, x € 9G,

where F : [?(G) — R.
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Open questions

» Blow-up-results for problems for partial integro-differential equations.

k Kurth Ordinary and part tegro-differential equations with applicat:i



Introduction
Preliminary remarks

Well-posedness and asymptotic behaviour
Partial integro-differential equations Remarks

Open questions

» Blow-up-results for problems for partial integro-differential equations.

» Improvement of the conditions on the kernel-functions.
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Open questions

» Blow-up-results for problems for partial integro-differential equations.
» Improvement of the conditions on the kernel-functions.

» Treating problems in unbounded domains, e.g. whole space,
half-space or exterior domains.

Patrick Kurth Ordinary and partial integro-differential equations with applications in glass:



Thanks for your attention.
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