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Mathematical model:

I φ : [0,∞)→ R density correlation function

I F : R→ R kernel-function dependent on material, temperature
and density, e.g. F (x) = v1x + v2x2 (v1, v2 ≥ 0)

I mode-coupling theory: φ fulfils the following IVP for a nonlinear
integro-differential equation:

φ̇(t) + φ(t) +

t∫
0

F (φ(t − s))φ̇(s)ds = 0, φ(0) = 1 (1)

I lim
t→∞

φ(t) = 0: material stays viscous

lim
t→∞

φ(t) 6= 0: glass-transition
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Aims

first part:

I Results on well-posedness and on the asymptotic behaviour of
solutions of (1).

second part:

I Treating problems for certain partial integro-differential equations,
e.g.

∂tu(t, x)−4u(t, x) +

t∫
0

F (u(t − s, x))∂su(s, x)ds = 0, +IV,+BC
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φ(t) + φ̇(t) +

t∫
0

F (φ(t − s))φ̇(s)ds = 0, t ∈ [0,∞). (1)

Formal differentiation of (1) with respect to t leads to

φ̈(t) = −(1 + F (1))φ̇(t)−
t∫

0

F ′(φ(t − s))φ̇(t − s)φ̇(s)ds. (2)

IV φ(0) = 1
(1)⇒ φ̇(0) = −1

Assumption: ∃ t ′ = inf{t > 0 : φ̇(t) = 0} > 0

(2), F′(x)≥0 (x∈R)⇒ φ̈(t) ≤ −(1 + F (1))φ̇(t), t ∈ [0, t ′].

Gronwall ⇒ φ̇(t) ≤ −e−(1+F (1))t , i.e. φ̇(t ′) < 0, contradiction

It follows: φ ist strongly monotonically decreasing.
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Monotone kernel-functions

Conditions on F :

I ∃x0 < 1 such that F (x0) = x0
1−x0 =: G (x0),

I F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x0, 1].
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I ∃x0 < 1 such that F (x0) = x0
1−x0 =: G (x0),

I F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x0, 1].

F is bounded, monotonically in-
creasing and differentiable on R
(w.l.o.g.),
i.e., problem (1) with F has a un-
ique solution φ ∈ C 1([0,∞),R)
that is strongly monotonically de-
creasing.
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Monotone kernel-functions

I ∃x0 < 1 such that F (x0) = x0
1−x0 =: G (x0),

I F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x0, 1].

Furthermore, monotonicity leads
to:
x0 ≤ φ(t) ≤ 1 for all t ∈ [0,∞)

Due to the equality of F and F on
[x0, 1], φ is a solution of the origi-
nal problem.
In particular, φ is convergent.
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Theorem

Let F : R→ R fulfil

(i) ∃x0 < 1 such that F (x0) = x0
1−x0 =: G (x0),

(ii) F is differentiable, monotonically increasing and locally
Lipschitz-continous on [x0, 1].

Then problem (1) with F has a unique solution φ ∈ C 1([0,∞),R) that is
monotonically decreasing and convergent against the maximal fixed-point
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Monotone kernel-functions: rates of convergency

Theorem

F ′(g) <
1

(1− g)2
(= G ′(g)) ⇒ ∃s0 > 0 : lim

t→∞
es0t(φ(t)− g) = 0.

sketch of proof (in case of g = 0, i.e. F (0) = 0):

I One proves by induction: ∀n ∈ N :
∞∫
0

tnφ(t)dt <∞.

I It follows: ∃s0 > 0 :
∞∫
0

es0tφ(t)dt <∞, i.e., lim
t→∞

es0tφ(t) = 0.
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F ′(g) <
1

(1− g)2
(= G ′(g)) ⇒ ∃s0 > 0 : lim

t→∞
es0t(φ(t)− g) = 0.

sketch of proof (in case of g = 0, i.e. F (0) = 0):

I For this we need to prove:

∃ε ∈ (0, 1), x0 > 0 ∀n ∈ N, x > x0 :∫ x

x0

tnF (φ(t))dt ≤ (1− ε)

∫ x

x0

tnφ(t)dt.
(3)

W. Götze, L. Sjögren: General Properties of Certain Non-linear
Integro-Differential Equations, Journal of Mathematical Analysis and
Applications 195, 230-250 (1995):
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∃ε ∈ (0, 1), x0 > 0 ∀n ∈ N, x > x0 :∫ x

x0

tnF (φ(t))dt ≤ (1− ε)

∫ x

x0

tnφ(t)dt.
(4)

If F is absolutely monotone and fulfils F ′(0) < 1, then one has (4).

ansatz: construction of an absolutely monotone function
H : [0, 1]→ R that fulfils H ′(0) < 1 and F (x) ≤ H(x) ≤ G (x) for
all x ∈ [0, 1).
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We obtain:
∃ε ∈ (0, 1), x0 > 0 ∀n ∈ N, x > x0 :
x∫
x0

tnF (φ(t))dt ≤
x∫
x0

tnH(φ(t))dt

Götze,Sjögren
≤ (1− ε)

x∫
x0

tnφ(t)dt

We need:
H ′(0) < 1 ⇐ F ′(0) < 1
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Theorem

Let F : R→ R and g < 1 the maximal fixed-point of F (x) = x
1−x .

Furthermore, let F be continuously differentiable and monotonically
increasing on [g , 1] with F ′(g) < 1

(1−g)2 .

Then problem (1) with F has a unique solution φ ∈ C 1([0,∞),R) that is
monotonically decreasing, satisfying

∃s0 > 0 : lim
t→∞

es0t [φ(t)− g ] = 0.
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Remarks

I An extension on cases of more general limits g 6= 0 can be obtained
easily.

I Let k(t) := 1− Φ(t), f (t) := t, g(x) := −1− F (1− x).
u(t) := 1− Φ(t) fulfils the following Volterra-integral equation

u(t) = f (t) +

t∫
0

k(t − s)g(u(s))ds.

This ansatz leads to blow-up solutions.

I Examples:

1. F (x) = −x2 + 2x ⇒ Φ(t)→ 3
2
−

√
5
4

exponentially.

2. F (x) = −x2 + 2x − 3 ⇒ ∃T > 0 : Φ(t)→ −∞ if t → T .

I In case of g = 0, F ′(0) = 1, F (x) ≤ x one has Φ(t) ∼ t−
1
2 .
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Kernel-functions under smallness-conditions

φ(t) + φ̇(t)+
t∫
0

F (φ(t − s))φ̇(s)ds = 0.
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Kernel-functions under smallness-conditions

ansatz: φ(t) + φ̇(t)+
t∫
0

F (φ(t − s))φ̇(s)ds = 0.

small nonlinear perturbation ↑

We start considering the following related linear problem:

φ(t) + φ̇(t) +

t∫
0

m(t − s)φ̇(s)ds = 0, φ(0) = 1, (5)

where m : [0,∞)→ R.

1. If m′ is exponentially decaying (resp. polynomial decaying) ”fast
enough”, then φ converges exponentially (resp. polynomially)
against zero.

2. Fixed-point arguments: Let u be an element out of a suitable class of
functions and Tu be the solution of (5) with m = F ◦ u. Schauders
fixed-point theorem leads to a solution of the nonlinear problem.
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Theorem

Let ε ∈ (0, 1) and f ∈ C 1
([
− 4

3ε ,
4
3ε

]
,R
)

twice differentiable in x = 0,
f (0) = f ′(0) = 0 and f (1) > −1. Then there exists a κ ∈ (0, 1] such that:
Problem (1) with F := κ · f has a unique solution φ ∈ C 1([0,∞),R)
satisfying

|φ(t)| ≤ 4

3 + 3κf (1)
e−

3+3κf (1)
4 t and |φ̇(t)| ≤ e−

3+3κf (1)
4 t .

examples:

(i) F (x) = 27
2624 (x2 − x4),

(ii) F (x) = ±
(
2
3

√
21− 3

)
x2.
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Remark

I The above presented methods can easily be extended on problems
with more-parametric kernel-functions:

φ̇(t) + φ(t) +

t∫
0

F (φ(t − s), t − s, s)φ̇(s)ds = 0, φ(0) = 1.
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Introduction
Preliminary remarks
Well-posedness and asymptotic behaviour
Remarks

Partial integro-differential equations

Let G ⊆ Rn a bounded domain, A =
n∑

i,j=1

−∂iaij(·)∂j + a(·) an elliptic

operator with positive spectrum σ(A) ⊆ [q,∞) (q > 0). We consider the
following problem ((t, x) ∈ [0,∞)× G )

ut(t, x) + Au(t, x) +

t∫
0

F (u(t − s, x))ut(s, x)ds = 0,

IC: u(0, x) = u0(x), x ∈ G

BC: u(t, x) = 0, x ∈ ∂G ,

(6)

where F : R→ R.
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Partial integro-differential equations

ut(t, x) + Au(t, x) +

t∫
0

F (u(t − s, x))ut(s, x)ds = 0,

IC: u(0, x) = u0(x), x ∈ G

BC: u(t, x) = 0, x ∈ ∂G ,

(6)

where F : R→ R.

aim: interpretation of the convolution-term in suitable function-spaces

If 4k > n, H2k(G ) is a Banach-algebra, i.e.
u, v ∈ H2k(G )⇒ uv ∈ H2k(G )

problem: ‖ · ‖H2k (G)-norm does not interchange with e−tA, solution:
‖ · ‖D(Ak )-norm. (‖u‖D(Ak ) = ‖u‖+ ‖Au‖)
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A =
n∑

i,j=1

−∂iaij(·)∂j + a(·) (formally), G ⊆ Rn smooth boundary

I elliptic regularity: Let k ∈ N and aij , a ∈ C 2k−1(Ḡ ), then one has:

∃C1,C2 > 0 ∀u ∈ D(Ak) : C1‖u‖H2k (G) ≤ ‖u‖D(Ak ) ≤ C2‖u‖H2k (G).

I Lemma: 4k > n, F ∈ C 2k(R,R), |F (i)(x)| ≤ v1|x |α (i = 1, . . . , 2k),
u ∈ D(Ak) ∩ C∞(G ) ⇒

F (u) ∈ D(Ak) : ‖F (u)‖D(Ak ) ≤

{
C4v1‖u‖αD(Ak ), ‖u‖D(Ak ) ≤ 1

C4v1‖u‖α+2k
D(Ak )

, ‖u‖D(Ak ) > 1

}
.

I Lemma: Let 4k > n, F ∈ C 2k(R,R) with F 2k locally
Lipschitz-continuous and F (i)(0) = 0 (i = 0, . . . , 2(k − 1)):

∀M > 0 ∃K > 0 ∀u1, u2 ∈ D(Ak)∩C∞(G ), ‖ui‖D(Ak ) ≤ M (i = 1, 2) :

‖F (u1)− F (u2)‖D(Ak ) ≤ K‖u1 − u2‖D(Ak ).
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aim: Declaration of F (u) in D(Ak) if u ∈ D(Ak) ∩ C∞(G ).

One has

∂βF (u) =

|β|∑
µ=1

F (µ)(u)
∑

γ∈N|β|0 ,|γ|=µ,
|β|∑
j=1

jγj=|β|

(µ+1)|β|−1∑
p=1

Cµ,γ,p

|β|∏
i=1

γi∏
l=1

∂α
i
l,pu,

where Cµ,γ,p ≥ 0 and αi
l,p ∈ Nn

0 with αi
l,p ≤ β and |αi

l,p| = i .
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F (µ)(u)
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|β|∑
j=1

jγj=|β|

(µ+1)|β|−1∑
p=1

Cµ,γ,p

|β|∏
i=1

γi∏
l=1

∂α
i
l,pu

‖∂β(F (u))‖ ≤
∑
µ

∑
γ

∑
p

Cµ,γ,p‖F (µ)(u)‖∞

∥∥∥∥∥ |β|∏i=1

γi∏
l=1

∂α
i
l,pu

∥∥∥∥∥
Hölder
≤

∑
µ

∑
γ

∑
p

Cµ,γ,p‖F (µ)(u)‖∞
|β|∏
i=1

∥∥∥∥ γi∏
l=1

∂α
i
l,pu

∥∥∥∥
2|β|
iγiHölder

≤
∑
µ

∑
γ

∑
p

Cµ,γ,p‖F (µ)(u)‖∞
|β|∏
i=1

γi∏
l=1

∥∥∥∂αi
l,pu
∥∥∥

2|β|
i

≤
∑
µ

∑
γ

∑
p

Cµ,γ,p‖F (µ)(u)‖∞
|β|∏
i=1

‖u‖γi
W i,

2|β|
i

.

Gagliardo-Nirenberg: 1
s = h

mq ⇒ ‖u‖W h,s (G) ≤ C‖u‖
h
m

Wm,q(G)‖u‖
1− h

m

L∞(G).
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γi∏
l=1

∂α
i
l,pu

‖∂β(F (u))‖ ≤
∑
µ

∑
γ

∑
p

Cµ,γ,pv1‖u‖α∞
|β|∏
i=1

C (i , |β|)‖u‖
iγi
|β|

H|β|
‖u‖

γi−
iγi
|β|

∞ .

|β| ≤ 2k, 4k > n
Sobolev⇒ ‖u‖∞ ≤ C0‖u‖H2k ≤ C0

C1
‖u‖D(Ak ).

It follows

‖F (u)‖H2k ≤

{
C5v1‖u‖αD(Ak ), ‖u‖D(Ak ) ≤ 1

C5v1‖u‖α+2k
D(Ak )

, ‖u‖D(Ak ) > 1

Still to prove: F (u) ∈ D(Ak) (boundary values).
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Still to prove: F (u) ∈ D(Ak).

Seen above: F (u) ∈ H2k(G ).

Let S : H1(G )→ L2(∂G ) be the (unique) trace-operator that satisfies
Su = u|∂G if u ∈ H1(G ) ∩ C 0(Ḡ ). One has (elliptic regularity)

D(A) = H1
0 (G ) ∩ H2(G ) = {u ∈ H2(G )|Su = 0}.

u ∈ D(Ak) ⊆ H2k(G )
Sobolev,4k>n⇒ u ∈ C 0(Ḡ ), u|∂G = 0

F (0)=0⇒ F (u)|∂G = 0
u∈C∞(G)⇒ F (u) ∈ D(A) ∩ C 2k(Ḡ ).

One shows by iteration: F (u) ∈ D
(
Ak
)

Patrick Kurth Ordinary and partial integro-differential equations with applications in glass-rheology



Introduction
Monotone kernel-functions

Kernel-functions under smallness-conditions
Partial integro-differential equations

Introduction
Preliminary remarks
Well-posedness and asymptotic behaviour
Remarks

Still to prove: F (u) ∈ D(Ak). Seen above: F (u) ∈ H2k(G ).

Let S : H1(G )→ L2(∂G ) be the (unique) trace-operator that satisfies
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Su = u|∂G if u ∈ H1(G ) ∩ C 0(Ḡ ). One has (elliptic regularity)

D(A) = H1
0 (G ) ∩ H2(G ) = {u ∈ H2(G )|Su = 0}.

u ∈ D(Ak) ⊆ H2k(G )
Sobolev,4k>n⇒ u ∈ C 0(Ḡ ), u|∂G = 0
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Lemma

4k > n, F ∈ C 2k(R,R), |F (i)(x)| ≤ v1|x |α (i = 1, . . . , 2k),
u ∈ D(Ak) ∩ C∞(G ).

⇒ F (u) ∈ D(Ak) : ‖F (u)‖D(Ak ) ≤

{
C4v1‖u‖αD(Ak ), ‖u‖D(Ak ) ≤ 1

C4v1‖u‖α+2k
D(Ak )

, ‖u‖D(Ak ) > 1

}
.

Now, let F as in the above lemma and u, v ∈ D(Ak) ∩ C∞(G ), then one
has: F (u), v ∈ H2k(G ) ∩ C 2k(G ) and due to 4k > n:
F (u)v ∈ H2k(G ) ∩ C 2k(G ). One can prove analogously by iteration
method: F (u)v ∈ D(Ak) and

‖F (u)v‖D(Ak ) ≤ C2‖F (u)v‖H2k ≤ C2C‖F (u)‖H2k‖v‖H2k

≤ C2C

C 2
1

‖F (u)‖D(Ak )‖v‖D(Ak ) =: C3‖F (u)‖D(Ak )‖v‖D(Ak ).

One proves analogously: F (u)vw ∈ D(Ak) if u, v ,w ∈ D(Ak) ∩ C∞(G ).
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class of solutions:

Let 4k > n, G ⊆ Rn be a bounded domain with
C 2k -boundary. u ∈ C 0([0,∞),D(Ak)) ∩ C 1([0,∞),D(Ak−1)) is called a
solution of (6), if

ut(t) + Au(t) +

t∫
0

F (u(t − s))ut(s)ds
L2(G)

= 0, u(0) = u0.

One has (s 7→ F (u(t − s))ut(s)) ∈ C 0([0,∞), L2(G )) if t ∈ [0,∞).
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Next steps:

I Well-posedness and asymptotic-behaviour results for the related
linear problem

u ∈ C 0([0,∞),D(Ak)) ∩ C 1([0,∞),D(Ak−1)) :

ut(t) + Au(t) +

t∫
0

m(t − s)ut(s)ds = 0, t ∈ (0,∞),

u(0) = u0 ∈ D(Ak+1), m ∈ C 1([0,∞),D(Ak)).

I Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C =
{

u ∈ C 1([0,∞),D(Ak)) : u(0) = u0,

‖u(t)‖D(Ak ), ‖ut(t)‖D(Ak ), ‖u(t)‖, ‖ut(t)‖ decay exponentially
}
.

I Fixed-point arguments lead to a solution for the nonlinear problem.
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Next steps:
I Well-posedness and asymptotic-behaviour results for the related

linear problem

ut(t) + Au(t) +

∫ t

0

m(t − s)ut(s)ds = 0, t ∈ (0,∞),

u(0) = u0 ∈ D(Ak+1), m ∈ C 1([0,∞),D(Ak)).

Lemma

Let u0 ∈ D(Ak+1) and m ∈ C 1([0,∞),D(Ak)) with m(0)(x) ≥ −q + ε
for a ε > 0 and for all x ∈ G . Furthermore, let mt(t)v ∈ D(Ak) for all
t ∈ [0,∞) and for all v ∈ D(Ak). In addition to that, let
‖mt(t)‖D(Ak ) ≤ ωe−c1t and lim

t→∞
‖m(t)‖D(Ak ) = 0, where c1 > ε and
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Let 4k > n, G ⊆ Rn be a bounded domain with C 2k -boundary,
u0 ∈ D(Ak+1) and F ∈ C 2k+1(R,R) with F (2k+1) locally
Lipschitz-continuous and F (u0(x)) > −q + ε for a ε > 0 and for all
x ∈ G .

i) Let c1 > ε.

ii) Let ω > 0 such that C3ω < ε(c1 − ε) and C0

C1
ω < ε(c1 − ε).

iii) Let α > 0 such that (α + 1)C3ω−ε(c1−ε)
c1−ε ≤ −c1.

iv) Let v1 > 0 such that

v1C3C4‖Au0‖α+1
D(Ak )

(
ε− c1

C3ω − ε(c1 − ε)

)α
≤ ω

and v1C3C4‖Au0‖α+2k+1
D(Ak )

(
ε− c1

C3ω − ε(c1 − ε)

)α+2k

≤ ω.

Furthermore, let

v)
∣∣F (i)(x)

∣∣ ≤ v1|x |α, i = 0, . . . , 2k + 1, x ∈ R.
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Solution in

C :=



u ∈ C 0([0,∞),D(Ak)) ∩ C 1([0,∞),D(Ak−1)) : u(0)
D(A)
= u0,

‖u(t)‖D(Ak ) ≤ ‖Au0‖D(Ak )
ε−c1

C3ω−ε(c1−ε)e
C3ω−ε(c1−ε)

c1−ε
t
,

‖ut(t)‖D(Ak ) ≤ ‖Au0‖D(Ak )e
C3ω−ε(c1−ε)

c1−ε
t
,

‖u(t)‖ ≤ ‖u0‖D(A)
ε−c1

C0
C1
ω−ε(c1−ε)

e

C0
C1
ω−ε(c1−ε)

c1−ε
t
,

‖ut(t)‖ ≤ ‖u0‖D(A)e

C0
C1
ω−ε(c1−ε)

c1−ε
t


.

We consider the following self-mapping

T : C −→ C, v 7→ T (v),

where T (v) is the solution of the related linear problem with
kernel-function m = F ◦ v .
Due to the smallness-conditions on F (resp. u0), T is well-defined.
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Next steps:

I Well-posedness and asymptotic-behaviour results for the related
linear problem

ut(t) + Au(t) +

∫ t

0

m(t − s)ut(s)ds = 0, t ∈ (0,∞),

u(0) = u0 ∈ D(Ak+1), m ∈ C 1([0,∞),D(Ak)).

I Formulation of a fixed-point equation for the nonlinear problem with
respect to a set of the following kind

C =
{

u ∈ C 1([0,∞),D(Ak)) : u(0) = u0,

‖u(t)‖D(Ak ), ‖ut(t)‖D(Ak ), ‖u(t)‖, ‖ut(t)‖ decay exponentially
}
.

I Fixed-point arguments lead to a solution for the nonlinear problem.

To this, let u0 ∈ C, un := T (un−1) (n ∈ N). One has: ∀N > 0:
(un)n∈N ⊆ C 1([0,N],D(Ak)) a cauchy-sequence with limit uN . If
one defines u(t) := uN(t) for t ≤ N, one gets a solution u ∈ C.
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Theorem

Let n ≤ 3 and f ∈ C 3
([
−C0

C1
‖Au0‖D(A)

2
q ,

C0

C1
‖Au0‖D(A)

2
q

]
,R
)

, four

times differentiable in x = 0 with f ′′′ locally Lipschitz-continuous and
f (0) = f ′(0) = f ′′(0) = f ′′′(0) = 0. Then there exists a κ > 0 such that
the problem

ut(t, x) + Au(t, x) +

t∫
0

F (u(t − s, x))ut(s, x)ds = 0,

u(0, x) = u0(x), u|[0,∞)×∂G = 0,

with F = κ · f has a unique solution u ∈ C 1 ([0,∞),D (A)) such that u
and ut decay exponentially with respect to the norms ‖ · ‖D(A) and ‖ · ‖.
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Remarks

The techniques can be used to treat more easier problems for equations
with kernels, that are independend of the space-variable x :

ut(t, x) + Au(t, x) +

t∫
0

F (u(t − s))ut(s, x)ds = 0,

IC: u(0, x) = u0(x), x ∈ G

BC: u(t, x) = 0, x ∈ ∂G ,

(7)

where F : L2(G )→ R.
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Open questions

I Blow-up-results for problems for partial integro-differential equations.

I Improvement of the conditions on the kernel-functions.

I Treating problems in unbounded domains, e.g. whole space,
half-space or exterior domains.
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I Improvement of the conditions on the kernel-functions.

I Treating problems in unbounded domains, e.g. whole space,
half-space or exterior domains.
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