ÜBUNGEN ZUR VORLESUNG THEORIE PARTIELLER DIFFERENTIALGLEICHUNGEN

Blatt 1

Aufgabe 1. (4 Punkte)

Sei $n \in \mathbb{N}_+$ und sei $B_1(0) := \{x \in \mathbb{R}^n : |x| < 1\}$. Sei η eine Friedrichsche Glättungsfunktion, d. h. es gilt $\eta \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$ mit supp $\eta \subset B_1(0)$, $\int_{\mathbb{R}^n} \eta \, d\lambda = 1$ und $\eta \geq 0$. Wir definieren für beliebige $\varepsilon > 0$ die zugehörige Diracfolge $\eta_{\varepsilon} := \varepsilon^{-n} \eta \left(\frac{x}{\varepsilon}\right)$.

Sei $\Omega \subset \mathbb{R}^n$ offen und $f \in L^1(\Omega, \mathbb{R})$. Wir setzen f durch Null auf das Komplement von Ω fort und definieren für beliebige $\varepsilon > 0$ die Funktionen $f_{\varepsilon} : \mathbb{R}^n \to \mathbb{R}$, $x \mapsto \int_{\mathbb{R}^n} \eta_{\varepsilon}(x - y) f(y) dy$. Sei $(\varepsilon_n)_{n \in \mathbb{N}} \subset \mathbb{R}_+$ eine Nullfolge und sei $\varepsilon > 0$ beliebig. Zeige die folgenden Aussagen:

- (i) Es gilt $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^n)$.
- (ii) Sei $K \subset \Omega$ eine kompakte Teilmenge von Ω und sei in dieser Teilaufgabe f noch zusätzlich stetig auf Ω . Dann gilt $f_{\varepsilon_n} \rightrightarrows f$ auf K für $n \to \infty$.
- (iii) Sei $m \in \mathbb{N}_+$. Sei in dieser Teilaufgabe f noch zusätzlich von der Klasse $C^m(\Omega)$. Sei $x \in \Omega$. Falls $B_{\varepsilon}(x) \subset \Omega$ gilt, dann ist $D^{\alpha}f_{\varepsilon}(x) = (D^{\alpha}f)_{\varepsilon}(x)$ für alle Multiindizes α mit $|\alpha| \leq m$. Sei $\Omega' \in \Omega$ offen, dann gilt $||f_{\varepsilon_n} f||_{C^m(\Omega')} \to 0$ für $n \to \infty$.

Aufgabe 2. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet mit $\partial \Omega \in C^1$. Sei $u \in C^1(\overline{\Omega})$.

(i) Sei $i \in \{1, ..., n\}$. Benutze den Gaußschen Divergenzsatz um

$$\int_{\Omega} u_i = \int_{\partial \Omega} u \nu^i$$

zu beweisen.

(ii) Seien $u, v \in C^1(\overline{\Omega})$. Zeige, dass für alle $i \in \{1, \dots, n\}$

$$\int_{\Omega} u_i v = -\int_{\Omega} u v_i + \int_{\partial \Omega} u v \nu^i$$

gilt

(iii) Sei $u \in C^2(\Omega) \cap C^1(\overline{\Omega})$. Sei $f \in C^0(\overline{\Omega})$ mit f > 0. Zeige, dass das Randwertproblem

$$\begin{cases} \Delta u = f & \text{in } \Omega, \\ \langle Du, \nu \rangle = 0 & \text{auf } \partial \Omega, \end{cases}$$

keine Lösung besitzt.

Aufgabe 3. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet. Sei $u \in C^2(\Omega)$. Entscheide und beweise, ob die folgenden Differentialgleichungen entlang der Lösung u elliptisch sind:

- (i) Sei $(a^{ij}) \in C^0(\Omega, \mathbb{R}^{n^2})$ eine Funktion, so dass $(a^{ij})(x)$ für alle $x \in \Omega$ eine symmetrische und positiv definite Matrix ist. u erfülle die Differentialgleichung $\sum_{i,j=1}^n a^{ij} u_{ij} = 0$.
- (ii) u erfülle die Minimalflächengleichung div $\left(\frac{Du}{\sqrt{1+|Du|^2}}\right)=0.$
- (iii) Sei $f \in C^1(\Omega \times \mathbb{R} \times \mathbb{R}^n)$. u erfülle die Monge-Ampère Gleichung det $D^2u = f(x, u, Du)$.
- (iv) Sei $f \in C^1(\Omega \times \mathbb{R} \times \mathbb{R}^n)$. u sei strikt konvex und erfülle die Monge-Ampère Gleichung det $D^2u = f(x, u, Du)$.

Aufgabe 4. (4 Punkte)

Sei $\Omega \subset \mathbb{R}^n$ ein beschränktes Gebiet. Sei $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$.

(i) Nehme an, dass $\Delta u(x)>0$ für alle $x\in\Omega$ erfüllt ist. Zeige, dass für alle $x\in\Omega$

$$u(x) < \sup_{y \in \partial \Omega} u(y)$$

gilt.

(ii) Nehme an, dass $\Delta u(x) \geq 0$ für alle $x \in \Omega$ erfüllt ist. Zeige, dass

$$\sup_{x\in\Omega}u(x)=\sup_{x\in\partial\Omega}u(x)$$

gilt. Hinweis: Berechne Δv , wobei $v(x) := e^{x_1}$ für $x \in \Omega$ sei.

 $Website: {\tt http://www.math.uni-konstanz.de/~lambert/Lehre.html}$