Übungen zur Vorlesung Theorie partieller Differentialgleichungen

Blatt 4

Abgabe: Bis Donnerstag, 17. November 2016, 17:00 Uhr, in die Briefksten neben F 411. Bitte schreiben Sie Ihren Namen auf jedes Blatt und heften Sie Ihre Blätter zusammen.

Website: http://www.math.uni-konstanz.de/~lambert/Lehre.html

Aufgabe 1. (4 Punkte) Sei $\Omega \subset \mathbb{R}^n$ offen und $u \in C^0(\Omega)$. Nehme an, dass für alle $\varphi \in C_c^{\infty}(\Omega)$

$$\int_{\Omega} u(x)\Delta\varphi(x)\,dx = 0$$

gilt. Zeige, dass u in Ω harmonisch ist.

Anleitung: Zeige, dass

- (i) die Mollifizierungen u_ε auch diese Integralbedingung erfüllen,
- (ii) die Mollifizierungen u_{ε} harmonisch sind und
- (iii) u die Mittelwerteigenschaft erfüllt.

Aufgabe 2. (2 Punkte) Seien $k, n \in \mathbb{N}_+$. Zeige, dass

$$(x_1 + \ldots + x_n)^k = \sum_{|\alpha| = k} {|\alpha| \choose \alpha} x^{\alpha}$$

gilt, wobei $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ ein Multiindex ist und

$$\begin{pmatrix} |\alpha| \\ \alpha \end{pmatrix} := \frac{|\alpha|!}{\alpha!},$$

$$\alpha! := \alpha_1! \cdot \alpha_2! \cdots \alpha_n!,$$

$$x^{\alpha} := x_1^{\alpha_1} \cdots x_n^{\alpha_n},$$

$$|\alpha| := \alpha_1 + \dots + \alpha_n.$$

Hinwies: Taylorentwicklung oder Induktion.

Aufgabe 3. (4 Punkte) Sei $n \in \mathbb{N}$, $n \geq 2$. Sei $\Omega \subset \mathbb{R}^n$ offen. Sei $u : \Omega \to \mathbb{R}$ in Ω harmonisch. Zeige, dass u in Ω reell analytisch ist.

Anleitung: Sei $x_0 \in \Omega$ und wähle $r := \frac{1}{4} \operatorname{dist}(x_0, \partial \Omega)$.

(i) Sei $\alpha = (\alpha_1, \dots, \alpha_n)$ ein Multiindex mit $|\alpha| = k \in \mathbb{N}$. Zeige, dass es eine von α unabhängige Konstante c > 0 mit

$$||D^{\alpha}u||_{C^{0}(B_{r}(x_{0}))} \le c\left(\frac{2^{n+1}n^{2}e}{r}\right)^{k} \alpha!$$

gibt. Verwende hierfür die Stirlingsche Formel

$$\lim_{k \to \infty} \frac{k^{k + \frac{1}{2}}}{k! e^k} = \frac{1}{\sqrt{2\pi}}.$$

(ii) Sei $r_0 := \frac{r}{2^{n+2}n^3e}$. Zeige, dass die Taylorreihe von u um x_0 in $B_{r_0}(x_0)$ konvergiert.

Aufgabe 4. (6 Punkte) Sei $n \in \mathbb{N}$, $n \geq 2$. Sei $u : \mathbb{R}^n \to \mathbb{R}$ harmonisch.

(i) Sei *u* nach unten beschränkt. Zeige, dass *u* konstant ist.

(ii) Sei $k\in\mathbb{N}.$ Nehme an es gibt eine Konstante C>0, so dass für alle $x\in\mathbb{R}^n$ $|u(x)|\leq C(1+|x|^k)$

gilt. Zeige, dass uein Polynom mit grad $u \leq k$ ist.