Übungen zur Vorlesung Theorie partieller Differentialgleichungen

Blatt 7

Abgabe: Bis Donnerstag, 8. Dezember 2016, 17:00 Uhr, in die Briefkästen neben F 411. Bitte schreiben Sie Ihren Namen auf jedes Blatt und heften Sie Ihre Blätter zusammen.

Website: http://www.math.uni-konstanz.de/~lambert/Lehre.html

Aufgabe 1. (4 Punkte) Sei $\Omega \subset \mathbb{R}^n$ offen und beschränkt. Sei $f \in C^0(\overline{\Omega})$. Sei $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$ mit $Lu \geq f$. Hierbei betrachten wir

$$Lu(x) = \sum_{i,j=1}^{n} a^{ij}(x)u_{ij}(x) + \sum_{i=1}^{n} b^{i}(x)u_{i}(x) + d(x)u(x),$$

wobei

- (i) a^{ij} symmetrisch ist, d. h. $a^{ij}(x) = a^{ji}(x)$ gilt.
- (ii) L gleichmaßig elliptisch ist: Es existiert $\lambda > 0$, so dass

$$\lambda |\xi|^2 \le \sum_{i,j=1}^n a^{ij}(x)\xi_i \xi_j$$

für alle $x \in \Omega$, $\xi \in \mathbb{R}^n$.

(iii) die Koeffizienten gleichmäßig beschränkt sind, d. h. es gibt K > 0, so dass

$$|a^{ij}(x)|, |b^{i}(x)|, |d(x)| \le K$$

für alle i, j und alle $x \in \Omega$.

Sei $d \leq 0$. Zeige, dass es eine Konstante $c = c(\Omega, K, \lambda)$ gibt, so dass

$$\sup_{\Omega} u \le \sup_{\partial \Omega} u^+ + c \sup_{\Omega} |f|$$

gilt.

Aufgabe 2. (12 Punkte) Sei T>0. Sei $\Omega\subset\mathbb{R}^n$ offen, beschränkt und zusammenhängend. Erfülle

$$u \in C^2(\Omega \times (0,T)) \cap C^0((\Omega \times (0,T)) \cup \mathcal{P}(\Omega \times (0,T)))$$

die Differentialungleichung

$$\dot{u} \leq Lu \quad \text{in } \Omega \times (0,T),$$

wobei wir annehmen, dass

$$Lu(x,t) = \sum_{i,j=1}^{n} a^{ij}(x,t)u_{ij}(x,t) + \sum_{i=1}^{n} b^{i}(x,t)u_{i}(x,t) + d(x,t)u(x,t),$$

wobei

- (i) a^{ij} symmetrisch ist, d. h. $a^{ij}(x,t) = a^{ji}(x,t)$ gilt.
- (ii) L gleichmaßig elliptisch ist: Es existiert $\lambda > 0$, so dass

$$|\lambda|\xi|^2 \le \sum_{i,j=1}^n a^{ij}(x,t)\xi_i\xi_j$$

für alle $x \in \Omega$, $t \in (0, T)$, $\xi \in \mathbb{R}^n$.

(iii) die Koeffizienten gleichmäßig beschränkt sind, d. h. es gibt K > 0, so dass

$$|a^{ij}(x,t)|, |b^{i}(x,t)|, |d(x,t)| \le K$$

für alle i, j und alle $x \in \Omega, t \in (0, T)$.

a) Sei $d \leq 0$. Zeige, dass

$$\sup_{\Omega\times(0,T)}u^+\leq \sup_{\mathcal{P}(\Omega\times(0,T))}u^+$$

gilt.

b) Zeige, dass

$$\sup_{\Omega\times(0,T)}u^+\leq \sup_{\mathcal{P}(\Omega\times(0,T))}(e^{Kt}u^+)$$

gilt.

- c) Sei $t_0 \in (0,T)$ und $I = (t_0 \delta, t_0)$ mit $0 < \delta < t_0$. Sei $x_0 \in \partial \Omega$ und gelte
 - (i) es gibt eine Kugel $B_R(y) \subset \Omega$ mit $x_0 \in \partial B_R(y)$
 - (ii) $0 = u(x_0, t_0) > u(x, t)$ für $(x, t) \in (\overline{B_R}(y) \times \overline{I}) \setminus \{(x_0, t_0)\}.$

Zeige, dass

$$\langle Du(x_0, t_0), x_0 - y \rangle > 0,$$

ist, falls diese Ableitung existiert.

d) Sei $t_0 \in (0,T)$ und $I = (t_0 - \delta, t_0)$ mit $0 < \delta < t_0$. Nehme an, dass u < 0 in $I \times \overline{\Omega}$ gilt und dass es ein $x_0 \in \Omega$ mit $u(x_0,t_0) = 0$ gibt. Zeige, dass $u(x,t_0) = 0$ für alle $x \in \Omega$ gilt.