Fachbereich Mathematik und Statistik Prof. Dr. Salma Kuhlmann Gabriel Lehéricy Simon Müller WS 2016-2017

Übungen zur Vorlesung Algebra B3

Weihnachtsblatt

Alle Aufgaben dieses Blatts sind freiwillig. Bei jeder richtig beantworteten Frage bekommt man einen Bonuspunkt.

R ist überall ein Integritätsring, F ist überall ein Körper.

Aufgabe 1

- a) Sei R ein Hauptidealring und $\mathfrak{p} \triangleleft R$ prim. Zeigen Sie, dass R/\mathfrak{p} ein Hauptidealring ist.
- b) Sei R ein Hauptidealring und $S\subseteq R$ eine multiplikative Teilmenge. Zeigen Sie, dass $S^{-1}R$ ein Hauptidealring ist.
- c) Sei $\mathfrak{p} \triangleleft R$ prim. Zeigen Sie, dass $\mathfrak{p}R[X]$, das von \mathfrak{p} in R[X] erzeugte Ideal, auch prim ist. Hinweis: Zeigen Sie zunächst, dass $f \in R[X]$ genau dann in $\mathfrak{p}R[X]$ liegt, wenn alle seine Koeffizienten in \mathfrak{p} liegen.

Aufgabe 2

Sei $\gamma := i\sqrt{5}$ und $R := \mathbb{Z}[\gamma]$.

- a) Zeigen Sie, dass $2, 3, 1 + \gamma, 1 \gamma$ irreduzibel in R sind.
- b) Finden Sie zwei verschiedene Zerlegungen von 6 in irreduzible Elemente in R.
- c) Sei $I=<2,1+\gamma>$. Zeigen Sie, dass I kein Hauptideal ist. Zeigen Sie dann, dass I^2 ein Hauptideal ist.

Aufgabe 3

- a) Zeigen Sie, dass das Polynom $X^4 + 9X^3 + 3X + 1 + i\sqrt{2}$ irreduzibel über $\mathbb{Z}[i\sqrt{2}]$ ist. Hinweis: überlegen Sie sich, ob $1 + i\sqrt{2}$ prim in $\mathbb{Z}[i\sqrt{2}]$ ist.
- b) Zeigen Sie, dass $X^{2^n} + 1$ irreduzibel über \mathbb{Q} ist. Hinweis: betrachten Sie das Polynom $(X+1)^{2^n} + 1$.
- c) Sei L ein Zerfällungskörper des Polynoms $f:=X^4+2X^2-2\in\mathbb{Q}[X]$. Bestimmen Sie $[L:\mathbb{Q}]$.

Aufgabe 4

- a) Sei K/F eine algebraische Erweiterung und $R\subseteq K$ ein Teilring von K, der F enthält. Zeigen Sie, dass R ein Körper ist.
- b) Sei $\operatorname{char}(F) \neq 2$. Sei K/F eine Erweiterung vom Grad 2. Zeigen Sie, dass es ein $\alpha \in K$ gibt, so dass $\alpha^2 \in F$ und $K = F(\alpha)$. Geben Sie ein Gegenbeispiel im Fall $\operatorname{char}(F) = 2$ an.
- c) Sei K/F eine Erweiterung und $x \in K$ transzendent über F. Zeigen Sie, dass für alle $n \in \mathbb{N} \setminus \{0\}$ $[F(x):F(x^n)]=n$ und dass x^n auch transzendent über F ist.

Abgabe: Freitag, 13. Januar 2017, 10:00 Uhr, Briefkästen auf F4.