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If f is a differentiable function from some half-line (a,400) to C, we will denote by d(a) the
derivative of a.
If k is a field and P € k[X], P’ denotes the derivative of P and Z(P) the set of roots of P.

Set F:={f:(a,00) = C|a€ R} and

G:={f:(a,00) >R |a€R} CF.

For f,g € F define f ~ g by Ja € R,Vx > a, f(z) = g(x). ~ is an equivalence relation on F;
for any f € F, the class of f will be denoted by f.

Set F:=F/~and G :=G/ ~.

F and G are rings with operations defined by: f+g=f+9, f.g= f.g.

We say that f is differentiable if there exists a € R such that f is differentiable on (a, +00),
and in that case we define the derivative of f as §(f) := 6(f)

Definition 1
A Hardy field is a subring K of G which is a field and such that for every f € K, f
is differentiable and §(f) € K.

A complex Hardy field is a subring of K of F which is a field and such that for

every f € K, f is differentiable and §(f) € K.

The goal of this lecture is to describe the real closure of a Hardy field and prove that it is
again a Hardy field.

Let K be a Hardy field and P € K[X] of degree n, P =" _ f,.X™. If a € R is such that
fi,--., fn are all defined and C! on (a, +oc) and f,,(x) # 0 for all z > a, we say that P is defined
on (a,+00). Note that such an a always exists.

If P is defined on (a,+c0), then for any > a we define P, as the polynomial of R[X]:
Py, =" _ fm(2)X™; note that P, also has degree n and that (P,)’ = (P’),, which we will
just denote by P.. Of course, the definition of P, depends on the choice of representatives for
fi,-++, f,. However, whenever a polynomial is introduced, we will always assume we have fixed
the representatives of its coeficients, so that P, is well-defined.

Note that if g € F, P(g) is the germ of the function 3" f;¢%, so P(g) = 0 if and only if there
exists a such that for all © > a, P,(g(x)) = 0.

I recall the following well-known fact:

Proposition
Let K be a field and P € K[X].

P has only simple roots in its splitting field if and only if ged(P, P') = 1 if and only
if there exist A, B € K[X] such that AP + BP' = 1.

If char(K) =0 and P is irreducible then ged(P, P') = 1.



The keystone of the proof of the main theorem of this lecture is a well-known theorem from
analysis, namely the implicit function theorem, which I recall here:

Theorem (IFT)

Let &/ C R",V C R™ two open sets, u:U x V — R™ a C* function for some k € N and
(z0,y0) € U XV such that u(xg,yo) = 0 and det(g—Z(xo, yo)) # 0. Then there exists an open
ball U, containing z,, an open ball V, containing y, and a C* function ¢ : Uy — V),
such that for any (z,y) € Uy x Vo,

u(@,y) =0y =¢(z)
We will actually need a particular form of the implicit function theorem, namely:

Proposition 2 (IFT’)

Let K be a Hardy field, P € K[X] defined on (a,), x9 > a and yo a complex root of
P,, which is not a root of P;O. Then there exists an open interval [/ containing z,
an open ball U/ containing 1y and a C*! function ¢ : I — U such that:

(%) V(z,y) €I xU,P(y) =0y =9¢(x)

u : (a,00)xC — C
(z,y) e (y)
u is C! on (a,+00) x C. By assumption, we have u(zg,yo) = 0 and %Z(:ro,yo) = P, (vo) #0,
so we can apply the to the function w at the point (zo,yo). O

Proof. Set

Lemma 3
Let K be a Hardy field and P € K[X] defined on (a,+00). If gcd(P,P’") = 1 then there exists
b € R such that for all x > b ged(Py, PL) = 1.

Proof. Since ged(P, P') =1 there is A, B € K[X] such that AP + BP’ = 1. Now let b > a such
that A, B are defined on (b, 00); for > b we have A, P, + B, P, =1, hence gcd(P,, P,) = 1.
O

Lemma 4
Let K be a Hardy field, P € K[X] non-zero defined on (a,00) and f a continuous function from
(a,00) to C such that Yz > a, P, (f(x)) =0 and P.(f(x)) # 0. Then f is differentiable on (a,c0).

Proof. Let xo > a, yo := f(wo). By hypothesis, yo is a root of P, but not of P, so we can apply
and we get I,U and ¢ as in such that (%) holds.

Set J := INf~Y(U). U is a neighborhood of 3 and f is continuous, so f~* (i) is a neighborhood
of xg, so J is also a neighborhood of x.

Let z € J; by assumption we have P,(f(x)) =0 and (z, f(x)) € I x U, which by () implies

f(z) = o(x).
This proves that f|; = ¢, which since ¢ is C"' implies that f is differentiable at x.
Since x¢ was chosen arbitrarily, this proves that f is differentiable on (a, c0). O

Proposition 5
Let K be a Hardy field and f € F a continuous function such that there exists

P € K[X] non-zero such that P(f) = 0. Then the ring K[f] is a complex Hardy field.

If f happens to be in G, then K|[f] is a Hardy field.



Proof. Without loss of generality, we can assume that P is irreducible. This implies that K|f]
is isomorphic to K[X]/(PK[X]), so it is a field. We now have to show that every element of
K| f] is differentiable and that K[f] is stable under derivation. It is sufficient to show that f is

differentiable and that §(f) € K|[f].

Since P(f) = 0, there exists a € R such that for all z > a, P.(f(z)) = 0. Since P is
irreducible and char(K) = 0, ged(P,P') = 1 so by lemma [3| there exists a > b such that for
all x > b ged(P,, P,) =1, so that P, and P, have no root in common. Thus, for any = > b,
P.(f(x)) =0%# P.(f(x)). We can apply lemma |4 and obtain that f is differentiable on (b, +00).

Set P=3" G X™

0=0(P(f) =2 6@FunS")
m=0

=5(g0) + > (6@, " +mg, I 6(F)

m=1

S 6 T+ 6 S mg, S
m=0 m=1
QUf) +a(F)P'(f)

with Q € K[X], hence 6(f) = ;?(%> € K[f). O
Lemma 6
Let K be a Hardy field, n € N and P € K[X] of degree n defined on (a,00) such that for all
r > a, P, has n distinct roots in C.

For any pair (x9,vo) € (a,+00) x C such that yo is a root of P, there exists a C' function
¢ : (a,00) = C such that yo = ¢(xg) and

Ve >a Pp(¢(z) =0 (1)

Proof. Let xo > a and yo a complex root of P, . Since P,, has simple roots, yo is not a root of P,
so we can apply [[FT] and we get an open interval I containing x(, an open ball U containing yo
and a C! function ¢ : I — U such that (x) is satisfied, which in particular implies that ¢(zo) = yo
and P(¢(z)) =0forall z € I.

Let € := {(J,¢) | J open interval ,I C J 3 is a C'-extension of ¢ to J and satisfies (1) on J}
£ is non-empty since (I, ¢) € €.

We can order € by saying that (J,¢) < (J',x) if J C J' and x extends .

Let (Jn,¥n)nen be a chain in €. Set J := J,cy Jn and define ¥ on J by o (x) = ¢p(v) if
x € Jy; this definition makes sense because vy, is an extension of 1y, for any h,h’ € H such that
Jp C Jp. If ¢ € J, then x € Jp, for some h € H, and since (Jp,¢p) € € we have P, (¢p(z)) =0
hence P, (¢ (x)) = 0. Thus, ¢ satisfies (1) on J, so (J,v) € €. Moreover, we have (Jp,, ¥p) < (J, )
for any h € H, so (J, %) is an upper bound of (Jp, ¥n)necn.

We just proved that any chain of £ has an upper bound. By Zorn’s lemma, it follows that £
has a maximal element (J, )

To conclude the proof, we only have to show that J = (a, +o0)
Set b := supJ. Towards a contradiciton, assume that b # +oo. By hypothesis, P, has n
distinct roots y1,. . ., Yn, none of which is a root of P/. We can apply again at each of the



points (b,y1), ..., (b,yn), and we get open intervals I, ..., I, containing b, open balls Uy, ..., U,
containing y1,...,y, and ¢1 : [ = U, ..., ¢y : I, = U, such that for each m € {1,...,n}, for
any (z,y) € Ly X Up,, Pu(y) =0& y = ¢ ()

Since y1, ...,y are pariwise distinct,we can choose the sets Uy, ..., U, so small that they are
pairwise disjoint.

Now let I" :== (" _; I, For any « € I', we have ¢1(z) € Uy, ..., ¢n(x) € Uy,; since Uy, ..., U,
are pairwise disjoint, ¢1(x),..., ¢, (x) are pairwise distinct. By (x), each ¢, () is a root of Py;
since P, has n roots, it follows that Z(Py) = {¢1(2),...,¢n(x)} CUp—; Unm.

Now let J' := I' N J; note that J' is an interval. For any « € J’, (1) implies that ¢ (x) is a root
of Py, hence 9 (z) € Uy, _; Um. Thus, we have (J") C ., _, U, Since 1 is continuous, 1(J') is
connected. Since Uy, ...,U, are pariwise disjoint, this implies that there exists m € {1,...,n}
such that ¢(J") C Up,.

Let x € J'; we have (x,9(x)) € L, XUy, and P, (1(x)) = 0. Since ¢,, satisfies (x) on I, X Up,
it follows that 1) () = ¢y, (). This proves that 1|5, = @, 1.

Define the function ¢ on J U I’ by: i(x) = { V() %f ved
Om(z) ifxel
This definition makes sense because ) and ¢,, agree on I’. 1) is a strict extension of 1. Since
¢ and ¢, are C1, 1) is also C. Since 1 satisfies (1) on J and ¢, satisfies (x) on I’, it follows
that ¢ satisfies (1) on J U I’, which contradicts the maximality of (.J, ).
Thus, b = +oo.
We could prove the same way that infJ = a.

Lemma 7
Let K be a Hardy field and P € K[X] of degree n such that ged(P, P') = 1.
There exist a € R and n C! functions ¢1,...¢, : (a,00) — C such that for each x > a,

Proof. By lemma [3] there exists ag € R such that for all > ag ged(Py, P.,) = 1 which means
that P, has n distinct roots in C.

Let a > ag, and let y1,...,y, be the n distinct roots of P,. By the previous lemma, we
get n C! functions ¢y, ..., ¢, from (ag,c0) to C such that for any m € {1,...,n}, ¢ (a) = ym
and for any = > a, {¢1(x)...,¢,(2)} C Z(P,). To show equality, we just have to show that
d1(x) # dm(x) for any & > a and any m,l € {1,...,n}.

Now let m,l € {1...n} and E := [a,00] N (¢ — &) "1 ({0}). Assume E # @.

By continuity of ¢,, and ¢;, F is a closed subset of R and has a lower bound a, so it has a
minimum b. Since ¢, (a) # ¢i(a), b > a.

Set ¢ := ¢,(b). ¢ is a root of Py, so we can apply at the point (b,c¢) and we get
an open neighborhood I x U of (b,¢) and a map ¢ : I — U satisfying (). Since U is a
neighborhood of ¢, and since ¢ = ¢, (b) = #1(b), ¢; ' (U) and ¢, (U) are neighborhoods of b, so
J:=1In(a,00) N, (U) N ¢, (U) is a neighborhood of b. Let = € J such that = < b; (z, ()
and (z, ¢m(x)) both belong to I x U and we have Py(¢m(x)) = Py(éi1(z)) = 0; since ¢ satisfies
() on I x U, this implies ¢;(z) = ¢(x) = ¢m(x), so x € E, which contradicts the minimality of b.

Thus, F = @. O]

Proposition 8
Let k£ be a Hardy field,

K := {f € G| fis continuous and 3P € k[X] such that P # 0 A P(f) = 0} and
L:={fec F| fis continuous and 3P € k[X] such that P # 0 A P(f) = 0}.



Then K is a Hardy field, L is a complex Hardy field, L is the algebraic closure of
k and K is the real closure of k.

Proof. Obviously, Kk C K C L.

Let f,g € K. By proposition |5 k[f] is a Hardy field. Since g is continuous and g is canceled
by a polynomial in k[f][X], we can again use proposition [5|and we get that k[f,g] is a Hardy
field, and since this field is algebraic over k it is contained in K. Since k[f, ] is a Hardy field, we
have 0,1, f — 3, %,6(?),5@) € k[f,g], hence 0,1, f — 7, %,5(?),6@) € K. This proves that K is
Hardy field. The same proof shows that L is a complex Hardy field.

Now let us show that L is algebraically closed. Let P € k[z] irreducible of degree n > 1. Since
char(k) =0, ged(P, P") = 1. Bythere is a € R and C! functions ¢y, ..., ¢, : (a,+00) — C such
that for any = > a, Z(P,) = {¢1(),...,n(z)}. This means that ¢,,...,d, are n distinct roots
of P. Since ¢y, ..., ¢, are continuous functions from (a, +o00) to C and ¢, ..., ¢, are canceled
by P € k[X], we have ¢,,...¢, € L

Thus, any polynomial with coefficients in k splits in L. Since L/k is an algebraic extension,
this proves that L is algebraically closed, and thus L is the algebraic closure of k.

Now note that L = K (4). Since K (i) is algebraically closed, K is real closed, and it is the real

closure of k.
O

Corollary 9
The real closure of a Hardy field is a Hardy field.



