The real closure of a Hardy field

Gabriel Lehéricy

July 6, 2015

If f is a differentiable function from some half-line $(a, +\infty)$ to \mathbb{C} , we will denote by $\delta(a)$ the derivative of a.

If k is a field and $P \in k[X]$, P' denotes the derivative of P and Z(P) the set of roots of P.

Set $F := \{ f : (a, \infty) \to \mathbb{C} \mid a \in \mathbb{R} \}$ and

 $G := \{ f : (a, \infty) \to \mathbb{R} \mid a \in \mathbb{R} \} \subseteq F.$

For $f, g \in F$ define $f \sim g$ by $\exists a \in \mathbb{R}, \forall x > a, f(x) = g(x)$. ~ is an equivalence relation on F; for any $f \in F$, the class of f will be denoted by \overline{f} .

Set $\mathcal{F} := F/ \sim$ and $\mathcal{G} := G/ \sim$.

 \mathcal{F} and \mathcal{G} are rings with operations defined by: $\overline{f+g} = \overline{f} + \overline{g}, \ \overline{f.g} = \overline{f}.\overline{g}.$

We say that \overline{f} is differentiable if there exists $a \in \mathbb{R}$ such that f is differentiable on $(a, +\infty)$, and in that case we define the derivative of \overline{f} as $\delta(\overline{f}) := \overline{\delta(f)}$

Definition 1

A Hardy field is a subring K of \mathcal{G} which is a field and such that for every $\overline{f} \in K$, \overline{f} is differentiable and $\delta(\overline{f}) \in K$.

A complex Hardy field is a subring of K of \mathcal{F} which is a field and such that for every $\overline{f} \in K$, \overline{f} is differentiable and $\delta(\overline{f}) \in K$.

The goal of this lecture is to describe the real closure of a Hardy field and prove that it is again a Hardy field.

Let K be a Hardy field and $P \in K[X]$ of degree $n, P = \sum_{m=0}^{n} \overline{f}_m X^m$. If $a \in \mathbb{R}$ is such that f_1, \ldots, f_n are all defined and C^1 on $(a, +\infty)$ and $f_n(x) \neq 0$ for all x > a, we say that P is defined on $(a, +\infty)$. Note that such an a always exists.

If P is defined on $(a, +\infty)$, then for any x > a we define P_x as the polynomial of $\mathbb{R}[X]$: $P_x = \sum_{m=0}^n f_m(x)X^m$; note that P_x also has degree n and that $(P_x)' = (P')_x$, which we will just denote by P'_x . Of course, the definition of P_x depends on the choice of representatives for $\overline{f_1, \ldots, \overline{f_n}}$. However, whenever a polynomial is introduced, we will always assume we have fixed the representatives of its coefficients, so that P_x is well-defined.

Note that if $g \in F$, $P(\overline{g})$ is the germ of the function $\sum f_i g^i$, so $P(\overline{g}) = 0$ if and only if there exists a such that for all x > a, $P_x(g(x)) = 0$.

I recall the following well-known fact:

Proposition

Let K be a field and $P \in K[X]$.

P has only simple roots in its splitting field if and only if gcd(P, P') = 1 if and only if there exist $A, B \in K[X]$ such that AP + BP' = 1.

If char(K) = 0 and P is irreducible then gcd(P, P') = 1.

The keystone of the proof of the main theorem of this lecture is a well-known theorem from analysis, namely the implicit function theorem, which I recall here:

Theorem (IFT)

Let $\mathcal{U} \subseteq \mathbb{R}^n, \mathcal{V} \subseteq \mathbb{R}^m$ two open sets, $u : \mathcal{U} \times \mathcal{V} \to \mathbb{R}^m$ a C^k function for some $k \in \mathbb{N}$ and $(x_0, y_0) \in \mathcal{U} \times \mathcal{V}$ such that $u(x_0, y_0) = 0$ and $det(\frac{\partial u}{\partial y}(x_0, y_0)) \neq 0$. Then there exists an open ball \mathcal{U}_0 containing x_0 , an open ball \mathcal{V}_0 containing y_0 and a C^k function $\phi : \mathcal{U}_0 \to \mathcal{V}_0$ such that for any $(x, y) \in \mathcal{U}_0 \times \mathcal{V}_0$,

 $u(x,y) = 0 \Leftrightarrow y = \phi(x)$

We will actually need a particular form of the implicit function theorem, namely:

Proposition 2 (IFT')

Let K be a Hardy field, $P \in K[X]$ defined on (a, ∞) , $x_0 > a$ and y_0 a complex root of P_{x_0} which is not a root of P'_{x_0} . Then there exists an open interval I containing x_0 , an open ball \mathcal{U} containing y_0 and a C^1 function $\phi: I \to \mathcal{U}$ such that:

$$(*) \quad \forall (x,y) \in I \times \mathcal{U}, P_x(y) = 0 \Leftrightarrow y = \phi(x)$$

Proof. Set $\begin{array}{ccc} u & : & (a,\infty) \times \mathbb{C} \to \mathbb{C} \\ & (x,y) & \mapsto & P_x(y) \\ u \text{ is } C^1 \text{ on } (a,+\infty) \times \mathbb{C}. \end{array}$ By assumption, we have $u(x_0,y_0) = 0$ and $\frac{\partial u}{\partial y}(x_0,y_0) = P'_{x_0}(y_0) \neq 0,$ so we can apply the IFT to the function u at the point (x_0, y_0) .

Lemma 3

Let K be a Hardy field and $P \in K[X]$ defined on $(a, +\infty)$. If gcd(P, P') = 1 then there exists $b \in \mathbb{R}$ such that for all $x > b \ gcd(P_x, P'_x) = 1$.

Proof. Since gcd(P, P') = 1 there is $A, B \in K[X]$ such that AP + BP' = 1. Now let b > a such that A, B are defined on (b, ∞) ; for x > b we have $A_x P_x + B_x P'_x = 1$, hence $gcd(P_x, P'_x) = 1$.

Lemma 4

Let K be a Hardy field, $P \in K[X]$ non-zero defined on (a, ∞) and f a continuous function from (a,∞) to \mathbb{C} such that $\forall x > a, P_x(f(x)) = 0$ and $P'_x(f(x)) \neq 0$. Then f is differentiable on (a,∞) .

Proof. Let $x_0 > a, y_0 := f(x_0)$. By hypothesis, y_0 is a root of P_{x_0} but not of P'_{x_0} so we can apply IFT', and we get I, \mathcal{U} and ϕ as in IFT' such that (*) holds.

Set $J := I \cap f^{-1}(\mathcal{U})$. \mathcal{U} is a neighborhood of y_0 and f is continuous, so $f^{-1}(\mathcal{U})$ is a neighborhood of x_0 , so J is also a neighborhood of x_0 .

Let $x \in J$; by assumption we have $P_x(f(x)) = 0$ and $(x, f(x)) \in I \times \mathcal{U}$, which by (*) implies $f(x) = \phi(x).$

This proves that $f_{|J} = \phi_{|J}$, which since ϕ is C^1 implies that f is differentiable at x_0 .

Since x_0 was chosen arbitrarily, this proves that f is differentiable on (a, ∞) .

Proposition 5

Let K be a Hardy field and $f \in F$ a continuous function such that there exists $P \in K[X]$ non-zero such that $P(\overline{f}) = 0$. Then the ring $K[\overline{f}]$ is a complex Hardy field. If f happens to be in G, then $K[\overline{f}]$ is a Hardy field.

Proof. Without loss of generality, we can assume that P is irreducible. This implies that $K[\overline{f}]$ is isomorphic to K[X]/(PK[X]), so it is a field. We now have to show that every element of $K[\overline{f}]$ is differentiable and that $K[\overline{f}]$ is stable under derivation. It is sufficient to show that \overline{f} is differentiable and that $\delta(\overline{f}) \in K[\overline{f}]$.

Since P(f) = 0, there exists $a \in \mathbb{R}$ such that for all x > a, $P_x(f(x)) = 0$. Since P is irreducible and char(K) = 0, gcd(P, P') = 1 so by lemma 3 there exists a > b such that for all x > b $gcd(P_x, P'_x) = 1$, so that P_x and P'_x have no root in common. Thus, for any x > b, $P_x(f(x)) = 0 \neq P'_x(f(x))$. We can apply lemma 4 and obtain that f is differentiable on $(b, +\infty)$. Set $P = \sum_{m=0}^{n} \overline{g}_m X^m$.

$$0 = \delta(P(\overline{f})) = \sum_{m=0}^{n} \delta(\overline{g}_m \overline{f}^m)$$

= $\delta(\overline{g_0}) + \sum_{m=1}^{n} (\delta(\overline{g}_m) \overline{f}^m + m \overline{g}_m \overline{f}^{m-1} \delta(\overline{f}))$
= $\sum_{m=0}^{n} \overline{\delta(g_m)} \overline{f}^m + \delta(\overline{f}) \sum_{m=1}^{n} m \overline{g}_m \overline{f}^{m-1}$
= $Q(\overline{f}) + \delta(\overline{f}) P'(\overline{f})$

with $Q \in K[X]$, hence $\delta(\overline{f}) = \frac{-Q(\overline{f})}{P'(\overline{f})} \in K[\overline{f}]$.

Lemma~6

Let K be a Hardy field, $n \in \mathbb{N}$ and $P \in K[X]$ of degree n defined on (a, ∞) such that for all x > a, P_x has n distinct roots in \mathbb{C} .

For any pair $(x_0, y_0) \in (a, +\infty) \times \mathbb{C}$ such that y_0 is a root of P_{x_0} , there exists a C^1 function $\phi : (a, \infty) \to \mathbb{C}$ such that $y_0 = \phi(x_0)$ and

$$\forall x > a \quad P_x(\phi(x)) = 0 \quad (\dagger)$$

Proof. Let $x_0 > a$ and y_0 a complex root of P_{x_0} . Since P_{x_0} has simple roots, y_0 is not a root of P'_{x_0} so we can apply IFT' and we get an open interval I containing x_0 , an open ball \mathcal{U} containing y_0 and a C^1 function $\phi: I \to \mathcal{U}$ such that (*) is satisfied, which in particular implies that $\phi(x_0) = y_0$ and $P_x(\phi(x)) = 0$ for all $x \in I$.

Let $\mathcal{E} := \{(J, \psi) \mid J \text{ open interval }, I \subseteq J, \psi \text{ is a } C^1\text{-extension of } \phi \text{ to } J \text{ and satisfies } (\dagger) \text{ on } J\}$ \mathcal{E} is non-empty since $(I, \phi) \in \mathcal{E}$.

We can order \mathcal{E} by saying that $(J, \psi) \leq (J', \chi)$ if $J \subseteq J'$ and χ extends ψ .

Let $(J_h, \psi_h)_{h \in H}$ be a chain in \mathcal{E} . Set $J := \bigcup_{h \in H} J_h$ and define ψ on J by $\psi(x) = \psi_h(x)$ if $x \in J_h$; this definition makes sense because ψ_h is an extension of $\psi_{h'}$ for any $h, h' \in H$ such that $J_{h'} \subseteq J_h$. If $x \in J$, then $x \in J_h$ for some $h \in H$, and since $(J_h, \psi_h) \in \mathcal{E}$ we have $P_x(\psi_h(x)) = 0$ hence $P_x(\psi(x)) = 0$. Thus, ψ satisfies (\dagger) on J, so $(J, \psi) \in \mathcal{E}$. Moreover, we have $(J_h, \psi_h) \leq (J, \psi)$ for any $h \in H$, so (J, ψ) is an upper bound of $(J_h, \psi_h)_{h \in H}$.

We just proved that any chain of \mathcal{E} has an upper bound. By Zorn's lemma, it follows that \mathcal{E} has a maximal element (J, ψ)

To conclude the proof, we only have to show that $J = (a, +\infty)$

Set b := supJ. Towards a contradiction, assume that $b \neq +\infty$. By hypothesis, P_b has n distinct roots y_1, \ldots, y_n , none of which is a root of P'_b . We can apply IFT' again at each of the

points $(b, y_1), \ldots, (b, y_n)$, and we get open intervals I_1, \ldots, I_n containing b, open balls $\mathcal{U}_1, \ldots, \mathcal{U}_n$ containing y_1, \ldots, y_n and $\phi_1 : I_1 \to \mathcal{U}_1, \ldots, \phi_n : I_n \to \mathcal{U}_n$ such that for each $m \in \{1, \ldots, n\}$, for any $(x, y) \in I_m \times \mathcal{U}_m$, $P_x(y) = 0 \Leftrightarrow y = \phi_m(x)$

Since y_1, \ldots, y_n are pariwise distinct, we can choose the sets $\mathcal{U}_1, \ldots, \mathcal{U}_n$ so small that they are pairwise disjoint.

Now let $I' := \bigcap_{m=1}^{n} I_m$. For any $x \in I'$, we have $\phi_1(x) \in \mathcal{U}_1, \ldots, \phi_n(x) \in \mathcal{U}_n$; since $\mathcal{U}_1, \ldots, \mathcal{U}_n$ are pairwise disjoint, $\phi_1(x), \ldots, \phi_n(x)$ are pairwise distinct. By (*), each $\phi_m(x)$ is a root of P_x ; since P_x has n roots, it follows that $Z(P_x) = \{\phi_1(x), \ldots, \phi_n(x)\} \subseteq \bigcup_{m=1}^{n} \mathcal{U}_m$.

Now let $J' := I' \cap J$; note that J' is an interval. For any $x \in J'$, (\dagger) implies that $\psi(x)$ is a root of P_x , hence $\psi(x) \in \bigcup_{m=1}^n \mathcal{U}_m$. Thus, we have $\psi(J') \subseteq \bigcup_{m=1}^n \mathcal{U}_m$. Since ψ is continuous, $\psi(J')$ is connected. Since $\mathcal{U}_1, \ldots, \mathcal{U}_n$ are pariwise disjoint, this implies that there exists $m \in \{1, \ldots, n\}$ such that $\psi(J') \subset \mathcal{U}_m$.

Let $x \in J'$; we have $(x, \psi(x)) \in I_m \times \mathcal{U}_m$ and $P_x(\psi(x)) = 0$. Since ϕ_m satisfies (*) on $I_m \times \mathcal{U}_m$, it follows that $\psi(x) = \phi_m(x)$. This proves that $\psi_{|J'|} = \phi_{m|J'}$.

Define the function $\tilde{\psi}$ on $J \cup I'$ by: $\tilde{\psi}(x) = \begin{cases} \psi(x) & \text{if } x \in J \\ \phi_m(x) & \text{if } x \in I' \end{cases}$

This definition makes sense because ψ and ϕ_m agree on I'. $\tilde{\psi}$ is a strict extension of ψ . Since ψ and ϕ_m are C^1 , $\tilde{\psi}$ is also C^1 . Since ψ satisfies (\dagger) on J and ϕ_m satisfies (\ast) on I', it follows that $\tilde{\psi}$ satisfies (\dagger) on $J \cup I'$, which contradicts the maximality of (J, ψ) .

Thus, $b = +\infty$.

We could prove the same way that inf J = a.

Lemma 7

Let K be a Hardy field and $P \in K[X]$ of degree n such that gcd(P, P') = 1.

There exist $a \in \mathbb{R}$ and $n \ C^1$ functions $\phi_1, \ldots \phi_n : (a, \infty) \to \mathbb{C}$ such that for each x > a, $Z(P_x) = \{\phi_1(x), \ldots, \phi_n(x)\}.$

Proof. By lemma 3, there exists $a_0 \in \mathbb{R}$ such that for all $x > a_0 \ gcd(P_x, P'_x) = 1$ which means that P_x has n distinct roots in \mathbb{C} .

Let $a > a_0$, and let y_1, \ldots, y_n be the *n* distinct roots of P_a . By the previous lemma, we get $n \ C^1$ functions ϕ_1, \ldots, ϕ_n from (a_0, ∞) to \mathbb{C} such that for any $m \in \{1, \ldots, n\}, \phi_m(a) = y_m$ and for any x > a, $\{\phi_1(x), \ldots, \phi_n(x)\} \subseteq Z(P_x)$. To show equality, we just have to show that $\phi_l(x) \neq \phi_m(x)$ for any x > a and any $m, l \in \{1, \ldots, n\}$.

Now let $m, l \in \{1 \dots n\}$ and $E := [a, \infty] \cap (\phi_m - \phi_l)^{-1}(\{0\})$. Assume $E \neq \emptyset$.

By continuity of ϕ_m and ϕ_l , E is a closed subset of \mathbb{R} and has a lower bound a, so it has a minimum b. Since $\phi_m(a) \neq \phi_l(a), b > a$.

Set $c := \phi_m(b)$. c is a root of P_b , so we can apply IFT' at the point (b, c) and we get an open neighborhood $I \times \mathcal{U}$ of (b, c) and a map $\phi : I \to \mathcal{U}$ satisfying (*). Since \mathcal{U} is a neighborhood of c, and since $c = \phi_m(b) = \phi_l(b)$, $\phi_l^{-1}(\mathcal{U})$ and $\phi_m^{-1}(\mathcal{U})$ are neighborhoods of b, so $J := I \cap (a, \infty) \cap \phi_l^{-1}(\mathcal{U}) \cap \phi_m^{-1}(\mathcal{U})$ is a neighborhood of b. Let $x \in J$ such that x < b; $(x, \phi_l(x))$ and $(x, \phi_m(x))$ both belong to $I \times \mathcal{U}$ and we have $P_x(\phi_m(x)) = P_x(\phi_l(x)) = 0$; since ϕ satisfies (*) on $I \times \mathcal{U}$, this implies $\phi_l(x) = \phi(x) = \phi_m(x)$, so $x \in E$, which contradicts the minimality of b. Thus, $E = \emptyset$.

Proposition 8

Let k be a Hardy field,

 $K := \{\overline{f} \in \mathcal{G} \mid \text{ f is continuous and } \exists P \in k[X] \text{ such that } P \neq 0 \land P(\overline{f}) = 0\} \text{ and } L := \{\overline{f} \in \mathcal{F} \mid \text{ f is continuous and } \exists P \in k[X] \text{ such that } P \neq 0 \land P(\overline{f}) = 0\}.$

Then K is a Hardy field, L is a complex Hardy field, L is the algebraic closure of k and K is the real closure of k.

Proof. Obviously, $k \subseteq K \subseteq L$.

Let $\overline{f}, \overline{g} \in K$. By proposition 5, $k[\overline{f}]$ is a Hardy field. Since g is continuous and \overline{g} is canceled by a polynomial in $k[\overline{f}][X]$, we can again use proposition 5 and we get that $k[\overline{f}, \overline{g}]$ is a Hardy field, and since this field is algebraic over k it is contained in K. Since $k[\overline{f}, \overline{g}]$ is a Hardy field, we have $0, 1, \overline{f} - \overline{g}, \overline{\frac{f}{g}}, \delta(\overline{f}), \delta(\overline{g}) \in k[\overline{f}, \overline{g}]$, hence $0, 1, \overline{f} - \overline{g}, \overline{\frac{f}{g}}, \delta(\overline{f}), \delta(\overline{g}) \in K$. This proves that K is Hardy field. The same proof shows that L is a complex Hardy field.

Now let us show that L is algebraically closed. Let $P \in k[x]$ irreducible of degree n > 1. Since char(k) = 0, gcd(P, P') = 1. By 7 there is $a \in \mathbb{R}$ and C^1 functions $\phi_1, \ldots, \phi_n : (a, +\infty) \to \mathbb{C}$ such that for any x > a, $Z(P_x) = \{\phi_1(x), \ldots, \phi_n(x)\}$. This means that $\overline{\phi}_1, \ldots, \overline{\phi}_n$ are n distinct roots of P. Since ϕ_1, \ldots, ϕ_n are continuous functions from $(a, +\infty)$ to \mathbb{C} and $\overline{\phi}_1, \ldots, \overline{\phi}_n$ are canceled by $P \in k[X]$, we have $\overline{\phi}_1, \ldots, \overline{\phi}_n \in L$

Thus, any polynomial with coefficients in k splits in L. Since L/k is an algebraic extension, this proves that L is algebraically closed, and thus L is the algebraic closure of k.

Now note that L = K(i). Since K(i) is algebraically closed, K is real closed, and it is the real closure of k.

Corollary 9

The real closure of a Hardy field is a Hardy field.