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Introduction
Consider the class WO of all well-ordered sets; if we denote by ∼= the relation “being isomorphic
to” between ordered structres, then ∼= defines an equivalence relation on WO. An ordinal can be
thought of as an equivalence class of WO under the relation ∼=; more precisely, the class Ord of
all ordinals satisfy the property that, for any well-ordered set A, there exists exactly one ordinal
isomorphic to A.

Another way to consider ordinals is to see them as an ordered sequence continuing the sequence
of natural numbers. Remember that in set theory, we define natural numbers as follows:

0 := ∅
1 := {0}
2 := {0, 1}
3 := {0, 1, 2}
...
n+ 1 := {0, 1, . . . , n} = n ∪ {n}
...

ω :=
⋃

n natural number
n

We can continue this process by defining the successor ω + 1 := ω ∪ {ω} of ω, and then ω + 2 the
successor of ω+1, and so on, and after repeating this ω times we can define ω+ω :=

⋃
n∈ω(ω+n).

Repeating this process indefinitely, we build the whole class of ordinals, which consists of infinitely
many successive copies of ω; see picture on page 6 for a better understanding.

1 Preliminaries
Notation: If A and B are ordered sets, A ↪→ B means that A is embeddable into B, i.e there
exists an order-preserving injective map from A to B.

Ordinals are a particular kind of well-ordered structures, which is why I need to recall a few
facts about well-orderings.

First, recall that the induction principle which is well-known for integers can be generalized
to well-ordered sets:

1



Theorem 1.1 (Transfinite Induction)
Let (A,<) be a well-ordered set and P(x) a property defined on A satisfying:

∀a ∈ A, ((∀b < aP(b))⇒ P(a))

Then P(a) is true for every a ∈ A.
Proof. Consider B := {a ∈ A | P(a) is not true }.

Assume B 6= ∅; since A is well-ordered, we can consider a := min(B). Then P(b) is true for
every b < a, but P(a) is false, which contradicts the hypothesis of the theorem.

Thus, B = ∅

Definition 1.2
An initial segment of A is a subset of A of the form Aa := {b ∈ A | b ≤ a}.
Proposition 1.3
Let (A,<) be a well-ordered set. If B is a proper initial segment of A, then there is
no embedding A ↪→ B. In particular, A and B are not isomorphic.
Proof. Assume there exists an embedding f : A ↪→ B.

We prove by induction on A: for all x ∈ A, f(x) ≥ x.
Let a ∈ A and assume that for all b < a, f(b) ≥ b.
Let b ∈ A such that b < a. Since f preserves the order, we have f(b) < f(a), and by induction

hypothesis we also have f(b) ≥ b hence f(a) > b.
This proves that for all b < a, f(a) > b, hence f(a) ≥ a.

Since B is a proper subset of A, there exists a ∈ A\B, and since B is an initial segment of A
we then have a > b for all b ∈ B; in particular a > f(a), hence a contradiction.

We now introduce the notion of transitive set which plays a central role in the definition of
ordinals
Definition 1.4
A set A is called transitive if every element of A is also a subset of A.

Equivalently: A is transitive if and only if: for all x ∈ A, for all y ∈ x, y ∈ A.
Lemma 1.5
Let A be a transitive set. Then ∈ is a transitive relation on A if and only if for every a ∈ A, a is
a transitive set.

Proof. Assume ∈ is transitive and let a ∈ A. We want to prove that a is a transitive set. Let
x ∈ y ∈ a; since A is a transitive set, we have x ∈ A, and so y ∈ A too. Since ∈ is a transitive
relation on A, the relation x ∈ y ∈ a implies x ∈ a. This proves that a is a transitive set.

Conversely, assume that a is a transitive set for all a ∈ A.
Let a, b, c ∈ A such that a ∈ b ∈ c. Since c is a transitive set, this relation implies a ∈ c.

Lemma 1.6
A union of transitive sets is a transitive set.

Proof. Let (Ai)i∈I be a family of transitive sets and set A :=
⋃
i∈I Ai. We want to show that A

is transitive.
Let a ∈ A and x ∈ a. There exists i ∈ I suchtthat a ∈ Ai. Since Ai is a transitive set, the

relation x ∈ a ∈ Ai implies x ∈ Ai, hence x ∈ A.
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2 Ordinals: definition and basic properties
Definition 2.1
A set α is called an ordinal if

• α is a transitive set

• (α,∈) is a well-ordered set

Remark 2.2 • The class Ord of all ordinals is not a set in the sense of axiomatic
set theory.

• The definition above implies in particular that ∈ is an order on α, so it is
a transitive relation. According to lemma 1.5, this means that any element
of α is a transitive set.

Example 2.3
Every natural number is an ordinal, and so is ω.

Proposition 2.4
∈ defines a strict order on Ord.

Proof. • ∈ is transitive: let α ∈ β ∈ γ all in Ord. Since γ is a transitive set, we have α ∈ γ.

• ∈ is antisymmetric: Assume there exists α, β ∈ Ord such that β ∈ α ∈ β. Since β is a
transitive set, we have β ∈ β, and since β ∈ α ∈ β, the relation ∈ is not antisymmetric on
β: this is a contradiction to the fact that β is an ordinal.

The order we consider on Ord will always be the one given by ∈; thus, if α, β are ordinals,
α < β means α ∈ β. I will use both notations indifferently.

Proposition 2.5
Let α be an ordinal. Then α := {β | β is an ordinal and β < α}.

Proof. Let β ∈ α, we want to show that β is an ordinal.
By remark 2.2, we know that β is a transitive set.
Since α is a transitive set, we have β ⊆ α, so the relation ∈ defined on β is the restriction of

the relation ∈ defined on α. Since (α,∈) is well-ordered, this implies that (β,∈) is well-ordered.
Thus, β is an ordinal.

As immediate corollaries we have:

Corollary 2.6
Let α, β ∈ Ord.

α ⊆ β if and only if ∀δ ∈ Ord, δ < α⇒ δ < β.
α = β if and only if ∀δ ∈ Ord, δ < α⇔ δ < β.

Corollary 2.7
Let α, β ∈ Ord such that α < β. Then α is a proper initial segment of β.

Our next step is to show that the order on ordinals is total.

Lemma 2.8
Let α, β be ordinals such that β * α. Then γ := min(β\α) exists and is included in α.

If moreover α ⊂ β, then γ = α, and so α ∈ β.
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Proof. The existence of γ comes from the fact that β\α 6= ∅ and that β is well-ordered. Note
that since γ ∈ β, γ is an ordinal and γ < β.

Let δ < γ. Since γ < β, we have δ ∈ β; however, since δ < γ, we have by minimality of γ:
δ /∈ β\α, hence δ ∈ α. This proves that γ ⊆ α.

Now assume that α ⊂ β and let δ < α; we also have δ ∈ β. If δ > γ, we would have α > γ, i.e
γ ∈ α, which by definition of γ is impossible. Since δ, γ ∈ β, and β is totally ordered, this implies
δ < γ. This proves that α ⊆ γ ,hence γ = α.

Lemma 2.9
Let α, β be ordinals. Then α ≤ β ⇔ α ⊆ β.

Proof. ⇒: if α = β there is nothing to prove; if α < β, the fact that β is a transitive set implies
α ⊆ β.
⇐: Assume α  β. In that case lemma 2.8 implies that α ∈ β,i.e α < β.

Proposition 2.10
< (which is also ∈) is a total order on Ord

Proof. Let α, β be ordinals such that β � α. By lemma 2.9, we have β * α, which by lemma 2.8
implies γ := min(β\α) ⊆ α. By lemma 2.9, we have γ ≤ α; however, by definition of γ, we can’t
have γ ∈ α, hence γ = α, hence α ∈ β.

Proposition 2.11
If α 6= β, then α and β are not isomorphic.

Proof. Since < is a total order, we can assume α < β. Then α is a proper initial segement of β,
which by proposition 1.3 implies that α and β are not isomorphic.

Proposition 2.12
(Ord, <) is well-ordered.

Proof. Since the order is total, we just have to show that there is no strictly decreasing infinite
sequence of ordinals α0 > α1 > α2 > · · · > αn > . . . . But if such a sequence existed, then
αn ∈ α0 for every n > 0, so (αn)n>0 would be an infinite decreasing sequence of elements of α0,
which would contradict the fact that α0 is well-ordered.

Proposition 2.13 • If α is an ordinal, then so is α ∪ {α}.
α+ 1 := α ∪ {α} is called the successor of α.

• If A is a set of ordinals, then
⋃
A is an ordinal.

sup(A) :=
⋃
A is the supremum of A (i.e, it is the smallest ordinal bigger than

every element of A.)

Proof. Set δ :=
⋃
A. δ is a union of transitive sets so by lemma 1.6 it is a transitive set. To show

that δ is well-ordered, just note that δ ⊂ Ord, and that Ord is well-ordered.
Let us show that δ is the supremum of A:
clearly, δ > α for any α ∈ A. Let γ ∈ Ord such that γ > α for all α ∈ A. Let β ∈ δ; there

exists α ∈ A such that β ∈ α < γ, hence β ∈ γ. This proves that γ ⊆ δ, hence γ ≤ δ.
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Remark 2.14 • The definition of the successor of an ordinal is consistent with
the usual definition of the successor of an integer: indeed, if n ∈ ω, then
n+ 1 = {0, 1, . . . , n} = n ∪ {n}.

• α+ 1 is the smallest ordinal strictly bigger than α.

• sup(A) is not necessarily a max: take A := {2n | n ∈ ω}, then sup(A) = ω,
but A has no max.

• However, if we take A := {0, 1, 3}, then sup(A) = max(A) = 3.

• If α is an ordinal, then in particular it is a set of ordinals, and in that
case we have supα = α.

Definition 2.15
An ordinal which is not a successor and is not 0 is called a limit ordinal.

Example 2.16
ω is a limit ordinal (it is actually the smallest one).

Thus, we can say that there are three kinds of ordinals: 0, successor ordinals and limit ordinals.
The distinction bewteen limit and successor ordinals is an important one, since they have different
properties; for example, a successor ordinal has a max, but a limit ordinal does not. We will
also see that we usually seperate the case of successor and limit ordinal when making a proof by
induction on ordinals.

Proposition 2.13 gives us the tools to inductively construct ordinals. Remember that natural
numbers are constructed by starting with 0 and by then repeatedly applying the successor map:
we define 1 as the successor of 0, 2 as the the successor of 1, and so on.

Ordinals are constructed by alternately applying these two operations:

• Taking the successor of the last ordinal defined.

• once the successor operation has been repeated ω times, take the supremum of all the
already defined ordinals.

More prescisely: we start by defining 0, then apply the successor operation ω times to construct
the set of natural numbers. We then define ω as the supremum of all natural numbers. We then
repeat the same process: after ω comes its successor ω+1 := ω∪{ω}, then ω+2 := (ω+1)∪{ω+1}
, and so on; after applying the successor operation ω times, we arrive at ω + ω := supn∈ω(ω + n).
By repeating this process indefinitely, we construct the class of ordinals.

To help you visualize this, here is a matchstick representation of the ordinal ω2; each stick
represents an ordinal:
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We now give another version of theorem 1.1, used for ordinals. Since there are three kinds of
ordinals (0, successor ordinal, and limit ordinal), the induction is split into three cases:

Theorem 2.17 (Transfinite induction on Ord)
Let P(x) be a property defined on ordinals such that :

• P(0) is true.

• If P(α) is true, then P(α+ 1) is true.

• If α is a limit ordinal and if P(β) is true for every β < α then P(α) is true.

Then P(α) is true for every α ∈ Ord.

Theorem 2.18 (Transfinite induction on an ordinal)
Let α ∈ Ord and P(x) a property defined on α such that :

• P(0) is true.

• If β + 1 < α and P(β) is true, then P(β + 1) is true.

• If β ∈ α is a limit ordinal and if P(γ) is true for every γ < β then P(β) is true.

Then P(β) is true for every β ∈ α.

We now come to the main theorem:

Theorem 2.19
Let (A,<) be a well-ordered set.

There exists a unique ordinal α and a unique isomorphism π : A→ α.
α is called the order type of (A,<), denoted ot(A)

The proof of this theorem will make use of the two following lemmas:

Lemma 2.20
Let (A,<) be well-ordered. If there exists β ∈ Ord such that A ↪→ β, then there exists a unique
isomorphism π : A→ α := min{β ∈ Ord | A ↪→ β}.

Proof. We build the isomorphism by induction on α:
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• π(0) := minA

• Assume π has been constructed up to β, so π is an isomorphism from β + 1 to Aπ(β). If
β + 1 = α, we are done.
Assume β+1 < α. If A = Aπ(β), we would have an embedding π−1 : A ↪→ β+1, which would
contradict the minimality of α, so A 6= Aπ(β). Thus, we can set: π(β + 1) := min(A\Aπ(β)).

• Let β be a limit ordinal such that for all γ < β, π(γ) is already defined, so that we have an
isomorphism π : β → B, where B := ∪{π(γ) | γ < β}. If β = α, we are done.
Assume β < α; If B = A, A would be isomorphic to β, which would contradict the
minimality of α. Thus, B is a proper subset of A and we can define π(β) := min(A\B).

By construction, it is easy to see that π in injective and preserves the order. Assume it is not
surjective; then α is isomorphic to a proper initial segment of A, so A cannot be embedded into
α: contradiction. Thus, π is surjective.

You can show the uniqueness of π like this: consider another isomorphism φ : α → A and
show by induction on α that π = φ.

Lemma 2.21
Let (A,<) be well-ordered. Assume that for all a ∈ A, there exists βa ∈ Ord such that Aa ↪→ βa.
Then there exists α ∈ Ord such that A ↪→ α.

Proof. For each a ∈ A set αa := min{β ∈ Ord | Aa ↪→ β}. Let us show that the map a→ αa is
an embedding of A into α := sup{αa | a ∈ A}+ 1:

Let a, b ∈ A such that a < b. Assume αb ≤ αa; in that case, αb is an initial segment of αa.
Moreover, by lemma 2.20, Aa is isomorphic to αa, so there is an embedding αa ↪→ Aa. Thus,
we have a sequence of embeddings: Ab ↪→ αb ↪→ αa ↪→ Aa, hence Ab ↪→ Aa. But since a < b,
Aa is a proper initial segment of Ab, so we have a contradiction with lemma 1.3. This proves
αa < αb.

proof of the theorem. Note that the unicity of α is given by proposition 2.11
By lemma 2.20, it is sufficient to prove that A is embedded into an ordinal.
We are going to prove by induction on A the following: for any a ∈ A, there is an embedding

Aa ↪→ αa ∈ Ord, and we will conclude by lemma 2.21
Let a ∈ A and assume that for all b < a, there is an embedding Ab ↪→ αb. set B := Aa\{a};

this is a well-ordered set which satisfies the condition of lemma 2.21, so there exists an ordinal α
such that we have an embedding π : B ↪→ α. We can extend π to Aa by setting π(a) := α, and π
thus becomes an embedding from Aa into α+ 1.

3 Arithmetic of ordinals
Remark 3.1
In the exercise sheet, an alternative definition of addition and multiplication will
be given; it is equivalent to the one I give here.

Definition 3.2
Let α, β be ordinals. We define α+ β by induction on β:

• α+ 0 = α
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• α+ (β + 1) = (α+ β) + 1

• If β is a limit ordinal, then α+ β := supγ<β(α+ γ)

Proposition 3.3
For any α, β, γ ∈ Ord:

• α+ (β + γ) = (α+ β) + γ

• If γ < β then α+ γ < α+ β

Proof. By induction on γ:

• α+ (β + 0) = α+ β = (α+ β) + 0

•

α+ (β + (γ + 1))
= α+ ((β + γ) + 1)
= (α+ (β + γ)) + 1
= ((α+ β) + γ) + 1(by induction hypothesis)
= (α+ β) + (γ + 1)

• If γ is a limit ordinal:

α+ (β + γ)
= α+ supδ<γ(β + δ)

= supδ<γ(α+ (β + δ))
= supδ<γ((α+ β) + δ)( by induction hypothesis)

= (α+ β) + γ

The second claim can also be proved by induction.

Definition 3.4
We define α.β by induction on β:

• α.0 = 0

• α.(β + 1) = α.β + α

• If β is a limit ordinal, α.β := supγ<β(α.γ).

Definition 3.5
We define αβ by induction on β:

• α0 = 1

• αβ+1 = αβ .α

• if β is a limit ordinal, then αβ = supγ<β(αγ).
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Proposition 3.6
For any α, β, γ ∈ Ord:

• α.(β + γ) = α.β + α.γ

• αβ+γ = αβ .αγ

• (αβ)γ = αβ.γ

Proof. All proofs are done by induction on γ.

Remark 3.7 • None of these three operations are commutative.

• (ω + 1).2 6= ω.2 + 1.2

• (ω.2)2 6= ω2.22

In other words, not every rule which holds for intergers is true in general for
ordinals; one should thus be careful when manipulating ordinal operations.

Examples of computation:
(ω + 1).2 = (ω + 1).(1 + 1) = (ω + 1).1 + ω + 1 = ω + 1 + ω + 1 = ω.2 + 1
(ω.2)2 = (ω.2)1.ω.2 = ω.2.ω.2 = ω2.2
(ω+1).ω = supn∈ω((ω+1).n). We can show by induction on integers that (ω+1).n = ω.n+1,

hence supn∈ω((ω + 1).n) = ω2.
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